
UNCLASSIFIED

AD NUMBER

AD489666

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Aug 1966.
Other requests shall be referred to Rome
Air Development Center, Griffiss AFB, NY.

AUTHORITY

RADC USAF ltr, 17 Sep 1971

THIS PAGE IS UNCLASSIFIED

RDfC-TR-,0-74 Volume I

Final, Report

-RELIABILITY CENTRAL, AUTOMATIC DATA PROCESSING SUBSYSTEM

Design Specification Report

Auerbach Corporation

TECHNICAL REPORT NO. RADC-TR-66-474
August 1966

This document is subject to special
export controls and eac;. transmittal
to foreign governments or ioreip
nationals may be made only with
prior approval of 1RADC (EMLI),
GAFB, N.Y. 13440.

"`'DD0

'!m - A ... r! • + +

cimetAviald Copy

Be~st Available Copy

When US Government drawings, specifications, or other data &!e used for sav purpo'se ochPc-
than a definitely relatedt government procurement operation, the government thereby incurs
no responsibility nor any obligation whasoaever; sand the fact that the gtovernment may have
'ormulated, furn-shed. or in any way supplied the sold drawings. specificationus. or oiher
data is not to be regarded, by implication or otherwise, as in say mamnatr licensing thc
holder or any other -rson or corporation, or conveying any rights or permission !o manu-

facturer, use, or sell any patented invention that may in any way be related thereto.

Do "C 0m16 tbis copI.. ki".Ai a"d.uy

RELIABILITY CENTRAL AUTOMATIC DATA PROCESSING SUBSYSTEM

Design Specification Report

Auerbach Corporation

This document is subject to special
export controls and each transmtil
ho fotrign go. ernments or foreign
naticnatals may be made only with
prior approval of RAOC (EMLI),
GAFH, N.Y. 1.3440.

MAiN. FW. I . 4.iN • ,A;I PLE S Afl , N ,J.

FOREWORD

This three-volume final technical report was prepared by the
Aueroach Corporation, Philadelphia 3, Pennsylvania u:ader Contract AF
30(602)-3820, Project 5519. It is identified by the contractor as
1280-TR. The authors were Dr. J. Sable, W. Crowley, M. ,,osenthal, S.
Forst, and P. Harper. The Rome Air Development Center Project Engineer
was Casper DeFiore, FN4IID.

This technical report contains information embargoed from release
to the Clearinghouse for Federal Scientific and Technical Information,
Department of Commerce, by AFR 400-10.

This technical report has been reviewed and is approved.

Approved: *TCIN I 1
- FRANK 4J.T TAINI

Chief, Information Processing 2ranch

Approved: •
JAMvE$ J. DA IL, Colonel, USAF

Chief, Intel & Info Processing Division

FOR THE COMMANDER»'"Ji VNG)~ ABE LMA, 1
chief, 4) onted Studiei Group

• i

ABSTRACT

This is Volume I of the three-voi,,ne final report produced for the Rome Air

Zv•.i2-enL *.euttr trk1A•) unt_':_ .. -.. '-•3.,. ,, 1 , .z,, 11 are the

Design Specification Report for the Automatic Data Processing Subsystem (ADPS) of
Reliability Central, known as Data Manager-1 (DM-1). Volume III is a survey of major,

compute r-oriented on-l'ne information and fact retrieval systems.

The system design specification will be used for the implementation of the

computer programs required to operate the RADC Reliability Central. The work

reportea in these volumes is an ;xtension and detailing of the functional system design

developed by AUERBACH Corp4 -ation under Contract AF30(602)-3433 and reported in

RADC-TR-65-189, Design of Reliability Central Data Management Subsysten, July,

1965. The DM-1 design providts for the incorporation of the reliability data collected
by the Illinois Institute of Technology Research Institute (IITRI) under Contract

AF30(602)-3621 with AUERBACH Corporation as subcontractor.

This volume defines the DM-1 system, describes its use, specifies a-

major system components and discusses the management of the data pool and job

library and the programming system services. Volume II contains a detailed descrip-

tion of the data pool and directorlei- and the technical documentation and flowcharts

for the system programs and jobs.

*M
liii

I.-

MvW10 PAMK WASUKI. _1WAP W__

TABLE OF CONTENTS

PARAGRAPH TIa'r.E PAGE

SECTIOQI I. INTRODUCTION

1.1 RELIABILITY CENTRAL DATA MANAGER-i (DM-1) 1-1

1.2 DESIGN SPECIFICATION REPORT 1-3

SECTION II. DESIGN OBJECTIVES

2.1 RELIABILITY CENTRAL REQUIREMENTS 2-1

2.2 CONVENIENCE 2-1

2.3 FUNCTIONAL RANGE 2-2

2.4 ADAPTABILITY 2-4

SECTION III. SYSTEM CHARACTErRISTICS

3.1 USER'S VIEW 3-2

3.1.1 Query Operations 3-4
3.1.2 Interpretive Processing 3-5
3.1.3 Sequence Execution 3-5
3.1.4 Recurrent Jobs 0 . . 3-5

3.2 DATk ADMINISTRATOR'S VIEW 3-6

3.3 PROGRAMMER'S VIEW 7...........................3-7

3.3.1 Program Description 3-7
3.3.2 Data Storage and Retrieval Services 3-8

3.4 INTEGRATED VIEW. .3.9..............................3-9

3.4.1 Data Base Development 3-9
3.4.2 Job Library Development 3-10
3.4.3 Operational Use 3-10

SECTION IV. DATA POOL FEATURES

4.1 DATA STRUCTURES 4-I
•4.1.1 item Types 4-2

,. .l2 Item Structure 4-4

4.2 PRIMARY DIRECTORIES 4-5

4.2.1 Item List 4-8
4.2.2 Term List 4-8
4.2.3 Term Encoding Table 4-8

TABLE OF CONTENTS (CONTO.)

PARAG Rt -H TITLE PAC; E

4.3 DATA REPRESENTATION 4-11

4.3.1 Data Streami... 4-11
4.3.2 Segmentation 4-13
4.3.3 Segment Index 4-15

4.4 SAMPLE RETRIEVAL 4-15
.1 A 1 Name Translation 4-17

4.4 z Search trate -............

4.4.3 Dai •Segment Retrieval 4-A
4.4.4 Data Stream Interpretation 4-'ý

4.5 INDEXING 4-20

4.6 LINKAGE 4-22

4.7 DATA INTEGRITY 4-26

4.7.1 Security Safeguard 4-26
4.7.2 Validity Safeguard 4-27
4. 7.3 Item ILockout (Busybit) 4-27
4.7.4 General Procedure 4-28
4.,w THE DATA POOL 4-28

4.8.1 Sbructure Development 4-30

4.8.2 Data Maninulation 4-31

4.9 CONDr'i IONA.L RETRIEVAL 4-32

4.10 THE [4 .LjOGUE 4-33

4.10.1 Uses of the Dialogue Procedure 4-34

4.11 RESTRUCTURING ITEMS 4-35

SECTION V. OPERATIONAL FEATURES

5. SYSTEM LANGUAGE SPECIFICATION 5-1

5.1.1 The Metalangua.. 52....................5-2
5.1.2 Extcrnal Definibon ýang~uatge...................5-4
5.1.3 Use of INSCAN with an Item Image 5-7
5.1.4 Data Language 5-10
5.1.5 The Job Request Language 5-15

5.2 JOB-PARA'¶ETER BINDING 5-18

5.2.1 Programs and Jobs 5-18
5.2.2 Binding Specification -21

Vi

A . . .

TABLE OF CONTENTS (CoNTD.)

PARAGRAPH TI'-.E PAGE:

5.3 RELATIONSHIP TO THE OPERATING SYSTEM 5-21

5.4 REQUEST PROCESSOR 5-24

5.4.1 Request Translation 5-24
5.4.2 Job Extension 5-26
5.4.3 The Request Record 5-27

5.5 JOB MANAGER ý,-28

5.6 SERVICE PACKAGE 5-31

SECTION VI. DATA-POOL MANAGEMENT

6.1 DATA INDEPENDENCE 6-2

6.2 DIRECTORY MANIPULATION 6-2

6.3 DATA MANIPULATION 6-4

6.4 PREPARATION FOR USERS 6-5

6.5 USAGE STATISTICS 6-6

SECTION VII. PROGRAM PAIL&METERS AND THE JOB
LIBRARY

7.1 PARAMETER CATEGORIES 7-1

7.1.1 Generalized Parameters 7-2
7,1.2 Specific Parameters 7-4
7.1.3 Parameter-Binding Examples 7-6

7.2 PROGRAM ENTRY 7-9

7.3 JOB DESCRIPTION 7-10

7.3.1 Component luput Parameter Binding 7-11
7.3.2 Component Ou4iut Parameter Bindlng 7-12
7.3.3 Parameter-Btiding Cboices 7-13

7.4 THE JOB DESCRIPTION LIBRARY 7-13

7.5 JOB AND PROGRAM DELETION 7-15

7.6 LJBRARY DISPLAY 7.....................7-16

11£

i *:

TABLE OF CONTENTS (CoNTD,)

PARAGRAPH 'rITLE PAGE

SECTION VIII. PROGRAMMING SYSTEM SERW ICES

8.1 DATA ACCESS SERVICES 8-2

8.1.1 Open-For-Input 8-2
8.1.2 Read . .. 8-4
S. ,. s Seek .. 8-5
8.1.4 Close-For-Input 3-5
8.1.5 Retrieve-Item 8-6
8.2 WRITING SERVICES 8-6

6.2,1 Open-For-Writing 8-7
8.2.2 Write 8-7
8.2.3 Close-For-Writing 8-8
8.2.4 Insert-Data 8-8

8.3 UPDATING SERVICES 8-8

8.3.1 Open-For-Updating 8-9
8.3.2 Read, Seek 8-9
8.3.3 Insert ... 8-9
8.3.4 Replace .. 8-10

3.5 Delete .. 8-10
8.3.6 Seek-With-Copy 8-10

8.3.7 Close-For-Update 8-10
s. 3.8 Replace-Item 8-11
8.3.9 Delete-Item 6-l1

viii

i. :I

LIST OF ILLUSTRi -D•:, i

FGuR. TOTLE

3-1 DM-1 System Overview

3-2 System Operation, Block Diagram .

A .1. Tree-Structure Representations .

4-2 Purchasing Item Structure

4-3 Sample Structure.............

4-4 Data Maze

4-5 Directories for the Purchasing Item ...

4-6 Tree and Network Diagrams for the Purcl ,:ý;-- ..

4-7 Purca•sing Item with Links.........

4-8 The Data Pool

5-1 Syntactic Chart

5-2 Structure Diagrams with Ite.n Itr"ges ...

5-3 Syntactic Chart for Item Image -4
5-4 EDL Syntactic Chart...............

5-5 Job-Run Request Sntactle Chart

5-6 Jobs as Black Boxes

5-7 Request Translation

5-8 Transitions Controlled by the Job Manager.

7-1 Categories of Input-Output Parameters.

7-2 Example of Parameter Binding

7-3 Job Construction Procedure.............

7-4 Intermediate Form of the Job F AILURF ANA, A

8-1 Interfaces of the ')M-1 Services

8-2 Sample Buffer Description Llit

ix

LIST OF TABLES

TAMLIKE TITL, PAF

4-1 DEFINITION FOR THE PURCHASING ITEM 4-6

4-2 TERM LIST AND ITEM IUST 4-9

4-3 TERM ENCODING TABLE 4-10

5-1 STRUCTURE OF THE REQUEST FILE 5-27

8-1 STRUCTURE DEFINITION FOR PURCHASING ORDERS FILE.. 8-3

t'

:

K

SECTION 1. INTRODUCTION

1.1 RELIABILITY CENTP..•L DATA MANAGER-I (DM-I)
i I

DM-l, a computer-based sc tware system, is designed for the Rome Air De-

velopment Center (RADC) to operate as the Automatic Data Processing Subsystem

(ADPS) of Rkeliability Centra). The DM-l system will apt ite in a ti-ne-shared mode

on the Reliability Cpntral data processing fNicility in conjunction with that facility's

operating system. The mission of Reliability Central, as a central activty-for the

acquisition, analysis, dissemination, and use of reliability information, presents an

imposing requirement for data processing resources. DM-1 satisfies this requff ement

by providing a set of data processing elements which cohere in an integrated system.

The major elements of the DM-1 system are:

(1) A rationale for the structUring of a large, dynamic data base.
The reliability data gathered 'y Reliability Central can be in-
tegrated into the DM-1 datU pool, under structural specifications
which retain the individuality of the diverse data items while
manifesting the relationship, among the items.

(2) A repertoire of generulized system operations that provide for the
manxgement of the DM-1 data pool. The reliabilit- analysts can
modify the data and its descriptive parameters to accommodate
new data elaments, or new relationships, or to adjust to changing
requirements and operattional experience.

1-

(3) A mechanism for retrieving selected data to meet specified
information needs. The Reliability Central staff can
access the precise data items needed to meet on-demand
requirements for information. DM-1 can display the results
of an inquiry issued at a console, develop a data item with
specified characteristics for further processing (reliability
analyses), or deliver the specified data to a program operating
with the system.

(4) A procedure which assists an inquirer in defining his informa-
tion needs. A Reliability Central user can perform a dialogue
with the system. he chooses the pertinent attributes to
descr ibe the item about which he needs information from
displays presented by the system. Each display identifies
the classes of information available in the DM-1 4ýatp pool.
The displays proceed from generic to specific identifiers
in response to the inquirer's selectionsp. After the attributes
are defined, the user provides limiting conditions which define
the properties of the individual units of information he needs,
by selecting characteristics to define t*Le pertinent data from
another series of displays.

(5) A library of application-oriented programs and jobs. The
Reliability Central can add new programs to the DM-1
repertoire to perform special-purpose reliability processes
on the data. New units of work (jobs) may be defined as
combinations of existing system and application programs to
meet'recurring needs for data processing.

'6) A mechanism for selecting data processing routines from
the library and applying them to specified data elements
in the data pool. The reliability analyst can issue commands
from a console for the execution of any job in the DM-1
library. He can specify the daLa items in the data pool to be
operated on by the job.

(7) A method of maintaining data and programs as independent,
mutually complementar-y resources. The reliability data
base need not be oriented to any specific set of programs.
The reliability application programs need not be limited
to operation on speific items of data. DM-1 maintains
structural information about the data in its directories and
the data requirements of the programs in its library. If
the requirements of the program fail to match the characteris-
tics of the data, the system can tranafor ithe data to the
formnat required by the program.

(8) A set of system routines to control the execution~ of DM-1
jobs and to service the data needs of programs during their
operation.

1-2

(9) A mechanism to provide for data integrity and security.
Reliability Central usors are protected from unauthorilzed
access to their data.

1.2 DESIGN SPECIFICATIQN REPORT

This report specifies the Automatic Data Processing .Subsystem (ADPS) of

Reliability Central. The general-purpoL ; nature of the data processing requirements

of Reliability Central and the anticipated need for aujustments in its requirements

predicate a need for a general-purpose solution. This report describes the Data

Manager-i (DM-1) as the initial basis for that solution.

The design specification for DM-1 is presented in two volumes. This first

volume describes the system as a whole. It definee the objectives of the design and the

characteristics of the system. It describes the system's features in terms of its two

major aspects - as the manager of the Reliability Central data base and as an operational

tool for the accomplishment of data processing objectives. This vo!ume also presents

the DM-1 components which support the Reliability Central staff in managing the data

pool and the job library and which support the programmers in accessing and storing

data in the system data pool.

Volume II contains the technical documentation on the system's components.

It describes the detailed structure of the system data pool and directories, which

provide for efficient handling of large Reliability Central files. The second volume also

contains flowcharts and descriptions for the DM-1 system routines and jobs,

specifically:

(1) The routines of the Service Package which provide the 1ntp-
face between operating programs and the data pool.

(2) The DM- I Supervisor. including the Request Processor which
responds to user requests from a console and the Job Manager
which manages the flow of control among programs.

13) The system jobs which provide for the manarement of the job
library., including the Program Entry and Job Description
jobs and jobs for deleting and displaying job descriptions.

(4) The system jobs which provide for muintenance of the data
pool. including the jobs for describing and deleting data
structures and the Jobs for aiding. deletlxg, modifying, and
updating data in the data pool.

1-3

W

(5) The system utility jobs, including Query and Conditional
Search for retrieving relevant data from the data pool,
conditional Reformat for subse•ting and restructuring data
items and Display for transforming internal data items to
an external form for presentation to users.

SfA

!-4

SECTION II. DESIGN OBJECTIVES

2.1 RELIABILITY CEN'i-;AL REQUIREMENTS

The specification of the ADPS requirements is derived from the mission

requirements of Reliability Central. Thus, the ADPS must have the stbility rot only

to gather dat and retrieve it selectively but also to make this data available to power-

ful analytic toWls in the form of computer programs. The Reliability Central ADPS

cannot be a system for the storage and retrieval of rigidly formatted Jocuments. Ut

must be capable of answ!aring information needs by supplying facts which may depend

on complex interrelationships within the data; and it must be prepared to adapt to

changing requirements as Reliability Central evolves. The design objectives discussed

in the following paragraphs are derived from the requirements of Reliability Central.

2.2 (OMENJENC E
DM-1 must be a service tool for a variety of Reliability Central users. The

users will range from those who wish to use the eystem without learning anythingabout

it to thooe who wish to be experts in the manipulation of its inner workings. r'-nse-

quently, the system will be driven by a console-based user, with a spectrum of

tools at his command.

2-1

i$

The user may obtain system guidance in specifying his requirements

through a multistage dialogue, in which he responds to displays generated by the

system. He may issue requests to the system in a user-oriented language which

shields him from the complexities of the system while giving him the power to perform

useful work.

The more advanced user may specify his requirements directly to the sys-

tem. He can issue complex requests that involve conditional selections and restruc-

turing of data in the course of job execution. He may modify the degree of system

control over specified data to enhance its performance in certain operations. He can

define new operations for entry into the DM-I library. Even for the expurt, the inter-

face with the system must be as simple and convenient as possible.

2.3 FUNCTIONAL RANGE

DM-1 will contain the full set of data processing capabilities associated with

the data base of Reliability Central.

The variety and complexity of reliability data demand the ability to specify

complex structures showing the interrelationships among data items. The dynamic

chai.. ter of the data must be accommodated by system tools which permit changes

in data struetures and data content. DM-1 supplies a series of system jobs that per-

mit the Reliability Central staff to manage the data pool without the use of special

programming.

The Reliability Central requirement for data reduction and analysis must

be met by a library of data processing and analytic programs capable of operating on

the data under DM-1 control. General-purpose programs capable of operating on• any

reasonable data in the reliability data base are needed. They should not be tied to

narrow applications with specific data. The Reliability Central staff must be able to

add new programs and jobs to the DM- I library to meet data processing requirements

as they arise. The core library of data processing and analytic programs supplied by

DM-1 must be expandable by the addition of programs developed by Reliability Central.

DM-1 system jobs should provide the ability to accept new programs. The Reliability
"entral staff must be able to define jobs in terms of existing system and user pro-

grams and jobs in order to tailor the library to evolving requirements, With this

capability, the jobs which produce the scheduled information products of Reliability

Central can be defined and added to the library.

Reliability information needs will be met by DM-1 A user should be able

to state an information need in a convenient language at a console and have the system

retrieve and display the data which answers the neeu. DM-1 must supply a system

language which permits the user to specify the attributes of the object, event, or pro-

cess of interest and the properties (conditions) which define the individual element!

abotA whiuh he wants information. When his information need is not well defined,

or if he is not familiar with the information available or the rules for specifying his

need, the user can cbtain system guidance by performing a dialogue.

Reliability Central will be faced with more complex information require-

ments that involve the selection of data from various parts of the data base, its

analysiL o0" reduction by programs and jobs, and the presentation of the results.

DM-1 must provide the user witii the ability to define the information to be processed,

the job to process it, and the results to be displayed. When the steps to be taken

depend on the results of aiialytic processes, the user may define and execute a step

at a time, display or query its results, and determine the next step.

Reliability Central users n.mst have immediate access to the services of

DM41. The system must be capable of serving competing users simultaneously. It

should be designed to operate in a multiprogrammed envirotnent where it can service

many users in parallel. Each user should see the system as dedicated '. him while he

is using it.

Many data elements in the reliability data pool will contain proprietary

information. DM-1 must protect Reliability CerAral users and contributors from

unauthorized access to such data and provide for the protection of the data from mod-

ification by unauthorized users or collisions in usage.

2-3

4'. . ..

2.4 ADAPTABILITY

All systems exist in ap ervironnment of change. DM-1 must be able to

adapt to changes and continue to give usetul service to Reliability Central as it evolves.

One element of adaptability relates to the DM-1 software. Its design is

modular so that it can be expanded with minimum cost and effort. Its system components

are general-purpose programs so that they may be applied when unforeseen uses arise.

In addition, the system contains a built-in capability to adapt to changes in dam and

processing requirements. The library of jobs and the data pool are managed as inde-

pendent resources. Data structures and data content may be changed by system jobs

as the need arises, without obsoleting the programs which operate on them. New pro-

grams may be added to the library. New operations (obs) may be defined in terms

of existing programs and jobs, even when these components were written to process

data in structures that differ from the ones to be operated o.n by the new operation. With

these tools, the reliability data base and the job library can he adapted Wo accommodate

changes in the data base or the processing requirements Gf Reliability Central.

The other element of adaptability relates to hardware and the operating

environment. DM-1 has been designed to take as little account of equipment idiosyn-

crasies as possible. Its data pool is stored in a device-independent format on a variety

of random-access devices. The logic of its processes is device- and computer-independent.

and the processes will be coded in a procedure-oriented language wherever possible. The

interfaces hetweei DM-1 and the equipment and the uperatinx system are designed to be

as narrow as possible. For example, all system procesezs are performed with logica,

data pool items as their input anc output so that only the service routines, whied deal

directly with the environment, take account of the features of the operating system and

the equipment.

2-4

I __ _ _

<4.-

SECTION III. SYSTEM CHARACTERISTICS

Programs and data are two prime resouroes of a data procesp:tg center.

DM-1 contains a collection of proct.-ures, executive functions, servI.ces, and programs

that views data and programs as independent entities whose properties r-mplement each

other. The same data is useful from many viewpointp, it should be available for use in

different applications and for processing by unrelated programs. The same program is

valuable -nmponent in many operations; it should be available for use. in difierent

applications to operat- on unrelated data. DM-1 meets these objectives by using a
system directory to separ~ate the structure of the data from th'e logic of the programs.

When focusing on data, the inf. " mation management aspects of DM-4 pre-

dominate. The system provides a rationale for structuring data and a set of tools for

managing and querying a common data pool. The item definition 'anguage and associated

mainteniance job's provide for naming data items (fields, files, or combinations), defin-

ing their structure, expressing the relationships among them, and changing these par-

"%aeuerS to meet the needs of a large, conetantly varying data pool. The data languages

and related maintenance Jobs provide for entering data, manipulating it, modifying It,

and changing its structure to meet changing requirements. The query language and the

3-I

conditional search, query, dialog, and display jobs provide for determining the signifi-

cart items, defining the significant data, retrieving it, and displaying it to meet both

predictable and unscheduled needs for iiformation.

When focusing on programs, the operational aspects of DM-1 predominate.

The system provides program taid job library services, symbolic binding of program

input and output parameters, data storagL md access services, and job execution

control. A program description, which specifies the input and output requirements of

the program, is maintained for every program in the system. Complex jobs may be

d-scriued as sequences of programs and jobs with binding specificatiors to retate the

inputs and outputs of the components. Any program or job may function as : task, job,

or subroutine. As a job, it m.ýy be executed by a command from a user's console. As

a task, it may be used as a component in a job description. As a subroutine, it may be

exccuted by a call from within a program.

Programs and data remain as independent resources to be combined as the

need arises. DM-1 maintains information about the str-.cture of the data in the system

directories; it maintains information about the input and output requirements of the

programs in the libraries; it has the ability to transform the existing data to meet the

requirem~ents of the programs.

Figure 3-1 is a simplified overview of the system. It shows the cuaversion

of external data to the system data poo, through the data collection and conversion jobs

ind the development of the job library through the program entry and job description

jobs. With these data and program resourcep available, the ui;er may request the

execution of an operation from the library on a data set from the data pool. The System

Supervisor responds to the user's request, aets system parameters to guide the selec--

tion of data, and oversees the execution of the sequence of tasks requested by the user.

Th. tasks store and retrieve data by calls on system serý Ice routines which intcrpret

the requests with guidance from the system directories. The relevant results of the

operation are presented to the user by the system output jobs.

3. 1 USER'S VIEW

DM-I in a console-directed system. It works in responht to aser comminds

issued in a job-request language from a console. The user treats the Job library as a

3-2

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

0

I--

002

00

00I

0 E

0 C

00

3-3

set of operators at his command. He treats the data pool as the operands to be boun..

to the operators. The As may ae lengthy ,cesses that consist of many tasks to be

executed over Lirge files of data or simple functions that consist of a single operat on

on a small unit of data. The user may execuLe a job by specifying its name and binding

Its input and output parameters. He may supply literal values for the parameters at

the conso],. or he may give the names of the data pool items containing the values.

The jcbs at the user's crmmqnd fall into several itegories. The input jobs

accept external data an-' map it into prescribed items in the data pool. The processing

jobs operate on items in the data pool to produce or update other items. The retrieval

jobs select items on given criteria. The output jobs display items at 'he console or

produce hard-copy reports. These are not exclusive categories. Many jobs are pre-

defined sequences ot other jobs that contain all of the categories.

3. 1. 1 Retrieval Operations

The user may engar- in a dialogue with the system to determine "e names

and structural relation-hips of items in the data pool, to select itL ms of int&. - t, and

to specify conditions for selecting the va'ues of those items for display or processing.

The dialogue guides the user to formulate an information retrieval statement and call- a

retrieval job to create a new item for processing or to produce a report or display of

selected items, based on the values of those iteins which meet a condition of arbitrary

comp!exity. After dialogue the user may storn the info,'mation retrieval statement

with a name which permits him to call a retrieval job directI. the next time the same

need ariscs.

A retrieval iob may be used to answer management questions about the state

of any items in the data pool. A condition of arbitrary complexity may be used to select

the items of Interest. Thc condition and the structure of the data pool permit the user

.o focus as narrowly as possible on the significant data, thereby eliminating manual

searches through bulky reports.

Another use for retrieval jobs is to develop a data set with special character-

Ltk~s An item mnity be develoiped by selecting the items which meet a condition and

mapping them into the structure of the new item. The new item would then be available

to other jobs for analysis or processing.

3-4

3. 1.2 Interpretive Processing

An analyst at a console may apply a step-by-step procedure in processing

data meet a nonrecurring requirement. He begins with some initial data items and

a set of otz-:n•.ions, capable of answering his needs, in the job library. He applies a

job to sele ted data itemE and its results are stored in another item, He may then use

a system display job to see tLhe results of the first step. Based on the results, he selects

the next .'-p and the data it is to operate on. This process is repeated until the desired

results are achieved.

Each step of the process is initiated by a job-run request, which gives the

name of the job ai,2' the values or names of the iterrs which are to be used as the input

and output paramet-rs for the job. The outputs of earlier steps inay be used as inputs

to later stepq. The process is feasible only if the jobs can turn around their results

quickly. With a set of such operations in the library, the job-run request is analogous

to a macroprogramming language which allows a user to code at a console and hav. his

instructions interpreted and executed as he presents them.

3.1.3 Sequence Execution

WVheni the user wishes to execute a sequence of jobs, the system Will acce-

a full description of the sequence before executing any of the jobs. He specifies eacil

job in the sequence and binds its input and output parameters, relating the outputs of

one step to the inputs of later steps. The sequence will be executed as though it were

a single job, with no interaction between the system and the user unless the jobs in the

sequence interact with him.

3. 1 4 Recurrent Jobs

A job may be created as a sequence of operations and stored in the job library.

Some of the parameters of the job may remain unbound. In this way, useful sequences

may be called and executed by a job-run request. Only the name assigned to the sequence

.aid the binding for any unspecified parameters need be given to trigger execution of the

sequence. A job created in this way way be used as a component In another job or called

as a subroutine of a program, as may any other job in the library

3-5

3.2 DATA ADMINISTRATOR'S VIEW

The management of a large complex data base for common use by a lacge

number of consumers must be centralized. A data administrator is needed to maintain

a balance among competing uses for the data. DM-1 provides a set of tools which support

the data administrator in managing the data base. He analyzes the tradeoffs involved in

competing usage and uses the system tools to maintain an appropriate balance. His

primary concern is the selection of options which yield the best performance.

The L,,a administrator manages the overall structure of the data base. Al-

though he takes little interest in the internal structure of items which are essentially

private files, he must resolve the structure conflicts that arise from common use of

data. If an item's structure is oriented toward one application, other applications may

require a structure transformation. If the information is maintp-'ed in several forms,

any updating must be applied several times. Conside, itions like these influence the

data administrator's decision about data structures.

The efficiency of operating on given data sets m v be enhanced by several

options of DM-1. The data administrator must evaluate tht ý of the options. Fields

which are frequently used as keys in retrieving or selecting dx, - 'ay be indexed in one

of several ways. The indexing creat, a an auxiliary directory table which permits rapid

location of items based on values o• the indexed field. Extra storage space is required,

-nd the cost of modifying the indexed field is higher, but retrieval time is improved

significantly. The data administrator must choose whether to index a. I which option

to select. Similarly, a I .ztcal linkage may b-- estabiiwhed uetween separate structures

in the da-a ý se. Here, too, there are advantages and disadvantages, and the data

administrator is charged with the decision.

Another area o; vonflict relites to the integrity and security of data The data

admhdstrator assigns all system users to a user's gro., and assigns each group an access

and modification level which lo-Acs them ot of certain areas of the data base while permit-

ting them to operate with other areas. Exceotions to the general rule are permitted. The

data administrator may assign 6pec..1c items of a forbidden class to specified users. The

asslgnments may be nxade to depend on the values of a specified field.

3-6

DM-1 helps the data administrator by maintaining usage statistics on key fields

and data retrievals. It supplies the tools which enable him to Implement his decisions.

A series of maintenance jobs permits him to define and change structures, index fields

and eliminate the index, restructure large volumes of data, and enter data or modify it

In a number of ways.

3.3 PROGRAMMER'S VIEW

DM-1 maintains a library of programs which are the basic building blocks of

jobs. It controls the execution of programs and manages the sequence of the programs

in a job. Guided by the program descript'on and the data pool directories, Jhe system

relates the data pool items to the input requirements of the programs and maps the

output data into other data pool items. The inputs of the individusa programs are

matched to data pool items and to the outputs of other programs, and any conditional

selections or transformations are accomplished automatically according to the speci-

fications of the job description or the job-ruu request. When a program is operating,

it uses the Service Package to retrieve its input data and store its output data. These

are some of the operational characteristics of the system.

3.3. ! Program Description

A prog, ',n cannot be made to be completely independent of the structure of

the data on which it operates. D~iring the processing steps of the program, the format

of the individual units of data affected by the steps is implicit in the code of the program.

However, this structure dependence exists only with respect to the units of data that

share actIhe memory with JLe program. The algorithms of the program are independent

of the atructure of data external to it, and they work properly if the data is delivered to

the program's inpstt butfer in the expected form. DM-1 manages the delivery of data

to a program's input buffer and performs transrformations on the data, if necepsary,

i, put it into the form required by the program. To 0o this, the system must know the

form of the data as it exists and the form required by the program. The former is given

in the data pool directories. The form required by a program is given in the program

description library.

.3.

p

I •,:

A program written for operation in DM-1 is written to operate with formal

input ard output parameters. The structure of these items is oriented L the require-

ments of the operation performed by the program. These structures might correspond

to actual structures in the data base, but this is not necessary. In fact, if a program

Is to be useful as a component of many jobs, it should be written to operate with the

most convenient structure, and it should be independent of the precise format c4--,ted

by so-i other program. An Item may be described as a formal parameter of the

program, even though it is an exact replica of a data base item, to pe-vnit the VCo-

gram to continue to operate without change, even if the structure is chl g.. In the

data base.

A p.,, gram is described to DM-1 by executing the progrnm description job.

The names and the precise struL...re of the formal input and output items are specified

at the console. This information is translated by the progra'n ,Lip1,G L , b 'nto an

entry in the library. Once a program has been described tc he system, it automatically

becomes a job in the system's repertoire. It may be called and executed on specified

data from a console, used as a component in another job, or called and executed as a

subroutine of another program.

3.3.2 Data Storage and Retrieval Serices;

A program reads data from the data pool and writes data into it by calling on

routines of the Service Package. The Service Package is analogous to an input-output

control system. It vontilis a resident interpreter and a set of service routines. The

routines are reentrant, so that they mry serve more than one user at a time.

The program may retrieve an item by giving the formal name assigned by

the programmer aid supplying a buffer to rece!ve the data. The system tranglates the

formal name into the actual item assigned to it by the Job debcription or the job-run

request. An item may be written into the data pool in a similar way. The program

places the data in a buffer and calls the appropriate service routine, giving the furmal

name of the item to be written.

When a program reads or writes parts of the saw,- Item repertedly. it may

Initialize the system by opening the item for reading or writing, The translations to

3-8

internal item identifiers are accomplished when the item is opened. Later operations

on the Item are more direct. This service is especially valuable when reading or writing

the records of a file.

The significant characteristics of the storage and retrieval services are the

system's ability to transform item structures and the use of an invariant name in the

proE-,mn. The name remains the same in the program, no matter which items of the

data poo± cre bound to it for a given run. It is completely independent of the location of

the item or of the characteristics of the storage devices.

3.4 INTEGRATED VIEW

The characteristics of DM-1 may be highlighted and their relationships may

be demonstrated by following the development of the tno major system resources and

describing the system in operation. The resources of the system are the data base and

the job lI'-ary.

3.4.1. Data Base Developm.ent

The null data pool of the system contains a basic structure that provides logical

space for items to be defined and the structure defin!tion for a set of directory tables.

which descr•,11 themselves only.

In the development of a data base, items are defined to the system by using

q-y-ým maintenance jobs. Once the structure been defined, data may be mapped into

!!% data base by other maintenancc jobs. These processes continue until an initial data

base is develoced. Since the data base is a constantly varying resource, the structures

and data are repeatedly ob~ged throughout the life of the system by system maintenance

jobs and application programs. Each time a change is made in the structure of the data

base, the system directories are updated. As the development progresses, the direc-

tories become richer in content.

The data administrator makes some initial decision# about indexing, linking,

and the access and modification levels if various users with respect to various items.

These decisions are conUtinually modified during the life of the system to adjust to exper-

lence and to take account of new developments.

i _3-9

.f

3.4.2 Job Library Development

The DM-1 job library contains a number of general-purpose system jobs for

building, maintaining, and querying the data base and job library. This basic repertoire

of operations can be expanded by adding user jobs to the library. User jobs may be com-

posed by combining appi~cation-oriented programs and the existing system jobs to

achieve the desired unit of work.

New programs are added to the library thr'ough the Program Entry job. After

the program has been compiled, it is d4scribed to DM-1. The user specifies the pro-

gram name, tha identifier for loading the object code, and the names and structures of

the program's inputs and outputs. This operation places the program in the DM-1 job

library. The program can then be used aL a component of a more complex job.

Additional jobs may be created t1h ough the Job Description job by combining

the existing jobs in the library. The language of a job description is like a macropro-
gramming language. Each component job is one step in the new job. The job's descrip-

tion consists of a job image and a series of job requests for the steps of the job. The

job image gives the name of the new job and the names of its input and output pai ameters,

if any. The input and output parameters of the new job are those parameters of :-ie com-

ponent jobs which will not be specified until a job-run request is issued. The job re-

quests for the steps of the new job contain the names of the component jobs and the names

of their input and output parameters. The inputs are related to job inputs, the outputs

of previous components, literal values, and data)ase items. The outputs are related to

job outputs, the inputs of succeeding components, and data base items.

3.4.3 Operational Use

DM-1 operates in association with an operating system which controls a multi-

programmed environment. The operating system recognizes DM-1 jobs as a class.

When a DM-1 job Is requested, the operating system ensures that the Service Package

Is in memory as part of the operating system's input-output control package. One set of

Service Package routines can serve any number of jobs in a time-shared mode.

Figure 3-2 is a block diagram that depicts the relationships among the system

components in operational use. A DM-1 job Is requested by keying the job --"quest

3-10

N.

User

Job

Requseet

DRrecuest

Proessre-2Sytn eroBlcDigm

Supervsor Tak3Lis

Ta

message at the console and signaling the operati, system that a DM-1 job Is to be ex-

ecuted. The operating system assigns memory to the job according to Its own s,%heduling

algorithm.

The first step in a DM-1 job is accomplished by the Request Processor. This

is a part of the DM-1 Supervisor which interprets the job request, prepares the job

parameters, and initiates the job. The Request Processor uses the job name to retrieve

the lob description from the library. It develops a task list containing the identifier3 for

the sequence of component tasks (jobs or programs). Using the job images from the job

description and the input and output specifications trom the job request, it builds the

input-output binding lists to relate ihe parameters of each task to data pool items. Any

item transformation or conditional selections required in relating actual items to formal

parameters are scheduled by the Request Processor.

The Job Manager is the part of the DM-1 Supervisor that controls the execu-

tion of the tasks of the job. It reads the next task from the task list, loads it, and gives

it control. The task maintains control until completion, unless the operating system's

scheduling algorithm interrupts it. When the task is completed, control returns to the

Job Manager to load the next task. The last task in the tasb. list Is the Request Termina-

tion task which performs final housekeeping and terminates 'he job.

While a task is operating, it uses the Service Package to retrieve and store

its data. The Service Package translates the formal parameter names used by the task

to data pool items by using the binding lists. Dat¶ retrieval and storage are accomplished

by the Service Package by using the system directories to locate and interpret the data

pool items.

3-12

- ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ __ _ __ _ _

SECT:ON IV. DATA POOL FEATURES

For efficient use of a common data base, the data must be highly organized

to permit rapid access and simple specification of pertinent items. The fundamental

strategy of DM-1 is to retain data In as flexible and accessible a form as possible by

using system directories. The d~4a is treated ws a segmented string whose structure

and syntax are maintained in separate directory tables, which are themselves part of

the segmented data string.

4. 1 DATA STRUCTURES

The use of data items related in a hierarchy is a familiar artifice of data

processing. The grouping of unit records behind a header card is an example of the use

of a hierarchy. The entire deck corresponds to a node at the highest level in a tree

structure. It is a file subsuming a record for each header group at the next level. Each

record subsumes the fields of the header card and a file of trailer cards. The header

fields are terminal items in the tree structure. Each trailer file subsumes a record for

each card which, in turn, subsumes the fields of the trailer card.

4-1

A!

DM-I uses several methods of representation for a tree structure. Figure

4-1 contains four different ways of showing the same hierarchical relatiorships among

eleven Items. The first form (a) represents each item as a node.

Node A ccntains the three subnodes B, C and I. Node C contains subnodes D

and H. Node D contains subnodes E, F, and G, aid node I contains subnodes J and K.

The indented form (b) shows the same relationship among the items by inden-ing the

subitems with respect t their parent items. The subitem form (c) assigns to each item

a size that stands for the number of subitems contained in that item. The parenthetic

form (d) uses parentheses to delimit the level of the items and slashes to separate items

on the same level in the hierarchy. A is alone on the highest level and is compozed of B,

C, and I on the next leve., where C is composed of D and H, etc.

4.1.1 Item Types

An item is a shigle node in a tree structure. The word item is used as a

generic term to include a node and all of its substructure. In this sense, the e ':re data

pool is a single item. It is a branching structure with a unique node at the top level and

branches emanating from this node to the next lower levels of nodes, and so on, until

the terminal nodes are reached. In the data pool, each node corresponds to a named

data item and the subtree subsumed by any node represents the definition of that item.

The items recognized by DM-1 fall into several classes:

(1) Field. A fieid is a terminal item; that is, it contains
no substructure. A fie'd is defined by its name, type,
size, and units. A same is an alphanumeric string
which is used externally to denote an item. The type
specifies the coding sch me of 'he field. It may be
alphnnumeric, integer, binary, octal, decimal, or ex-
ponential. The size is the number of charp.cters in the
field (adphanumeric characters, binary bitz, decimal
digits, "tc.). The size may be fixed or variable in
length. The unitv designator specifies the scale on
which the value of the field is measured; e.g., volts,
amperes, meters, etc.

(2) Statement. A statement is an item which subsumes other
items. Its subitems may be fields, illes, or oth-r state-
ments. For example, a statement may contain several
fields. Another statement may contain Lhat statement
and several other items. A statement is defined by its
name and the definitions for its subitems. In effec', the
statement is a mechanism for associating several rolated

4-2

A .

B .*

(a) Node Representation

A R T I N GTO0N A (3)

B 0SI 1N B(0

CA MB RI D GE C (2)

DE N VE R D (3)

E LK T 0N E 0

GENEVA C (0)

H A NOV ER H(0

I S TA NB UL 1 (2)

K A SH MIR K (0)

(b) Indented Representation (.c) Subitem Rep. esentatiofl

A(B/C (D E/F G I I) / (/K)

(d) Parenthetic Representation

Figuire 4-1. Tree-Structure Representations

4-3

items to show the relationship and permit them to
be treated as a unit. The data value of a statement
is the set of values of its subsumed fields.

(3) U_•. A file is an item which subsumes an arbitrary
number of subitems, each of which has an identical
structure. Its subitems are records. The file is de-
fined by naming it and defining each of the subitems
of its records. The data value of a file is the group
of values of the fields subsumed by all the records of
the file.

(4) •Loor.. A record is the subitem of a file. It is
exactly like a statement in that .t subsumes other
items. Like the statement, its subitems may be
fields, statements, fWes, or special items in any
combination. Unlike a statement, however, a re-
cord may o,. ur an arbitrary number of times in
the data. The file and record are related in such
a way that one cannot be separated from the other.
The record always follows the file. It is defined
when the file is defined. The data value of a record
is the set of va!ues o& the fields it subsumes,

(5) Null Node. A null node is a terminýJ iten' repr-sentlng
a position in the logical structure. it contains no
subltems and it stands for no data. It is an artifIce to
reserve a slot in the logical structure.

(6) Link. A link is an itew which logically subsumes a ect
of items on another stem in the tree structure. It per-
mits a logical connection etween twvo branches of the
tree and givws the structure a network character.

4. 1. 2 T" .-n Structure

The DM-1 data description language rpermits the use of variable length fields,

optional Wltms, and nested structures, Files with variable numbers of reco, JBs may be

embedded within the records of higher level files. Any nunmber of files, statement:, or

fields may be subsumed by the srnic ecord or sthtement.

Table 4-1 shows the dei,.;ition of the item PURCHASING in the indented out-

line form. The item is a statement containrig three files. The ITEM file is a catalogue

conUtining i. record for each item which miht be ordered on a purchase order. Each

record in the catalogue contains three required fields. The DESCRIPTION field is

marked as optional by the asterisk. The ORDER file is a list of outstanding purchase

4-4

orders. Each record contains identifying information fk" a purchase order w•l kn ITEM
LIST. The ITEM IUST contains a record for each item on tbe purchase order. This is an

exampJe uf a file embedded in each record of a higher level fia. The VENDOR file cm-

tauins records describing vendors with a list of the active purchase orders for each vendor.

The column headed ICC I,% Table 4-1 contains an Internal system identifier for

each item in the definition. This logical name for the item in called an eRem Class Code

(ICC). It is derived from the relativa position of the item within the data pool. In the

figure, the item PURCHASING haa the ICC 1, since. it is the parent node of the entire

structure. Its subitems are numbered on the next level: 1. 1 lor the ITEM file, 1. 2 for

the ORDER file and 1.3 for the VENDOR file. The records of the files occupy a level in

the structure. The level is represented by an R in the ICC. The subitems of the records

are numbered on "e next level.

Another code, the Item Position Code (IPC), is used intornally to identify units

of data in the data pool. The ICC becomes an IPC when a record number replaces each

R in the ICC. For example, the £PC 1. 1. 3. 1 stands for the uniýpe occurrence of the

"ITEM NO. field (1.1. R. !) in the third record of the ITEM file. 'h IPC 1.2.5. 6 repre-

sents the ITEM LIST file (1. 2. R. 6) for the purchase order identified in the fift'a record

of the ORDER file.

The structure diagram shown in Figure 4-4 is another form of item definition.

The structure of the PURCHASING statement is shown tu a form analogous t., the node

form of structure reprepentation. The shape of the node specifies the type of the item

at that node: an oval for a statement, a rectangle for a file a hexagon for a record, awd

a lIne for P field. Figure 4-2 clarifies the meaning of th1 Item Class Code as the logical

position of the Item in the structure. ICC's are assigned tc items by counting the lter..

on each level and moving to a deeper level each time a statement of file is encountered.

4.2 PR!4ARY DIRECTORIES

The structural descri~i~on of the data is maintained by ,A-l in• the system

directories. The primary directories contain the information from the item definition.

The primsuy directories are the im List, the Term List, and the Tero Encoding Table.

Theme are used to focus in on the data Ld A to describe its structure. They functior as a

guide i .- terpreting the data so that it may be delive.*d to a program in a suitable form

for processing.

4-5

2.

TABLE 4-1. DEFINITION FOR THE PURCHASING ITEM

ICC ITEM DEFINITION

1 PURCHASING, S

1.1 IPEM, F

1. 1. R. I ITEM NO., I, V

1.1. 1. 2 VENDOR NO., I, 4

1. 1. R. 3 PRICE, E, V

1. 1. R. 4 *DESCRIPTION, A, V

.2 ORDER, F

1.2.R.I P.O. NO., I, 6

1.2.R. 2 DUE DATE, D, 6

1.2.R.3 REQUESTOR, A, V

1.2.R.4 VENDOR NO., I, 5

1.2.R.5 VALUE, E, V

1.2.R.6 ITEM LIST, F

1. 2ýR.6. R. 1 ITml NO., 1, V

1.2. R. R.I .R. 2 QUANTITY, I, 5

1.2.R.6.R. 3 COST, E, V

1.3 VENDOR, F

1.3. R. 1 VENDOR NO., I, 4

1.S.R.2 VENDOR ý'AME, A, V

1.3. R. 3 VENDOR ADDRESS, A, V

1.3.R. 4 ORDER LIST, F

1.3.R. 4.R. 1 P.O. NO., 1, 6

1.3.R.4.R.2 REQUESTtO, A, V

4-6

Purchsn

3 VedorTRI Rtem No.

-P. 0. NO. 2 Vemnor No.

1 Veador No. 2 Due Date

2 Vendor Name 3 Requestor 4 Dscription

3 VT e dor' Address 4 ,Vendor No.

4, HOrder List 5 _Value

I P.O . No.- R

2 Re~qustor I Rem NO.

:.•3 Cost

Now.: The letter "IR" indifiates that the itemmis a reoord wtloh/ isepeate in the

i:t
Iiu 4-2. mrobasing b ez ue

l4-7

4. 2.1 item I-,

Tht. It-ri .ikt • -t tue •:vnte" o, di vi-,ectory system. It is a file with a

recosid for eas i r_ m (h *r .Cxu The records are in order ki

the Item Clabe, Cc . of ,,, tw&,. ,... em - at -y contains the item type and the

size of the item. fhe size of etc .ý,is ar,•- ,. _: -- t•., number of subitems they

subsume directly.

The ,berm List also conte-t o v n . .o: ... son iabout the item. However, the

primary structural 'information i• the item cyf* i size. Other parts of the Item List

entry will be discussed in other sectionc j' t ;s report. The detailed structure of the

Item List is presented in Volume 11, Par.graph 2.3.

Table 4-2 shows the Item List lor the PURCHASING item in the third column.

The item type and the size are showti in each entry. The optional DESCRIPTION field

is flagged with va asterisk. The structure of an item is implied by the sizes given for

nonterminal items.

4.2.2 Term List

The item names awl mnits are maintained in a Term List file which is parallel

to the Item List file. These elements are maintained separately because they are not

needed to interpret the data structure and it is desirable to store the structural informa-

tion as compactly as possible in the Item List. For each record in the Item List there

is a record in the Term List, and the corresponding record numbers contain informa-

tion about the same item.

4. 2.3 Term Encodiug Table

The item name is used as the identifier of the item by DM-I users. The ICC
;, Used as the Ideotifier by the system. To enable the system to translate from v a eru's

name to its ICC, the Term Encoding Table (TET) is maintained. The TET is

contain'ng a record for each unique item name in alphabetical order. The ordrh : per-

mits rapid translation from an item's name to Ito ICC. Since there may be more than

one item with a given name, each record of the TET oontains a file of ICC's corresponding

to a s11gl4 name. Table 4-3 shows the Term Encoding Table for the purchasing statement.

4-8

S......... . . - •

TABLE 4-2. TERM. LIST AND ITEM LIST

TERM IST ITEM
LET

PURCHASING 1 S, 3

ITEM 1.1 F, V

. - - 1. 1.R R, 4

ITEM NO. 1.1.R.1 I, V

VENDOR NO. 1.1.R.2 1,4

PRICE 1.1.R.3 E, 6

DESCRIPTION 1.1.R.4 A, V,*

ORDER 1.2 F, V

1.2. R R, 6

P.O. NO. 1.2.it. 1 I, 6

DUE DATE 1.2. R. 2 D, 6

AEQUESTOR 1.2. R. 3 A, V
VENDOR NO. 1.2. R. 4 1,5

VALUE 1.2.R.5 E, V

ITEM LIST 1.2.R. 6 F, V

1.2.R. 6.R R,3

ITEM NO. 1.2.R.6.R.1 I, V

QUANTITY 1.2.R.6.R.2 I, 5

COST 1.2.R. 6.R. 3 E, 7

VENDOR 1.3 F, V

1.3.R R,4

"VENDOR NO. 1. 3. R. 1 I, 4

VENDOR NAME 1.3. R. 2 A,"

VENDOR ADDRESS 1.3. R. 3 A, V

ORDER LIST 1.3. R.4 F, V

1.3.R.4.R R, 2

P.. NO. 1.3. R.4. R.1 1, 6

.R.QUESTOR 1.3.R.4.R.2 A, V

4-9

*

t " • 1 . . i ll i I

/

/

TABLE 4-3. IRM ENCODING TABLE

NAME _I•c FIE

COST 1.2.R.6.R.3

DESCRIPTION I.1.R.4

DUE DATE 1.2. R. 2

ITEM 1.1 .

ITEM LIST 1.2. R. 6

ITEM NO. 1. 1. R. 1
1.2.R. 6.R. 1

ORDER 1.2

ORDER LIST i. 3. R. 4

P.O. NO. 1.2.R. 1
1.3.R.4.R. 1

PRICE 1. 1.R. 3

PURCHASING 1

QUANTITY 1. 2. R. 6. R. 2

REQUESTOR 1. 2. R. 3
1.3.R.4.R.2

VALUE 1. 2 R. 5

VENDOR 1.

VENDOR ADDRESS 1.3.R.3

VENDOR NAME 1. 3. R. 2

VENDOR NO. 1.1.R.2
1.2.R.4
1.3.R. I

4-10

h practice, the names of other Items in the data pool would be merged with the names

of the items in the purchasing staterient in a single TET.

"4.3 DATA REPRESENTATION

DM-1 treats the entire data pool as an unformatted stream of binary bits.

This stream is segmented arbitrarily at any Item boundary. Since no account is taken

.of word boundaries or the coding mechanisms of the devices, thro data pool segments are

Independent of the characteristics of the computer and the storage devices. The ser-

vice routines that interpret the data stream with the aid of the sys tem directories are

•fomputer dependent. This approach focuses the computer dependence of the system

in a small set of routines.

4.3.1 Data Stream

A hypothetical example will be used to explain the system's mechanism for'
representing data. Figure 4-3 (a) contains a structure diagram of a statement named
A. It consists of the field a, the file B and the field h. The file B contains the field b,

the statement C, the file D and the field j. The statement C contains two fields and
each record of D contains two fields. The subitem representation of the structure is

given next to the structure diagram. This is the form in which structure information
appears in the Item List.

The files, records and statements in a structure relate their subnodes as a
single entity, but only the fields take on values in the data. The diagram in Figure 4-3
(b) emphasizes this character of a structure. It shows the string of fields, a through h,
emanating from vertical bars and representing the nonterminal items. The diagram

in Figure 4-3 (c) is derived from the buss network. It is a maze which defines the
logical order of itenis in the starnctv're. The nath through "r= •..e At ý 's ttp

.. - -• is at item A. 5ince tli3 is a nonterm.nal Lem, tie maze must be

followed to the right until a field is encountered. At the field a, the maze contains a gap
which opons to the ne.-t subitem of the statement A. The file B is a nonterminal item

and its oubitems, the records of the file, are also nonterminal. The path moves to the
right until the field b occurs with an opening to the next level. This pattern continues
through the maze, passing the items of the structure in their data base order:

A,a,B,"R",b,C,c,d,D,"R",e,f,g, and h.

II
A (3)

a a (0)

B B5(R)

R "R"(4)

b b (0)

c d C (2)

c c (0)

C d (0)

3 D D (R)

"R"(2)

e (0)

t U0)

4 g (0)

3 h (0)

(a) Structure Diagram

A a a

b b

d

8 g

S h h

(b) Buss Network Diagram

HA a
B "lt° b b

C C• V

d d

D "It e af

B h

Flgtre ,4-3. Sample &ructire

•, ~4-12

iC

' . •- .D

,, , i]H] i -

The Item List is like r. emplat in the form of the maze and is to be used to

interpret the unstructured string of data values. Only field values occur in the data

stream. An example of a data maze is given in Figure 4-4. The data stream, repre-

sented in the figure by the column of subscripted letters at the rights, consists of

vaiues for the fields. The interpretation of this data stream, with the Item List as a

template, is symbolized by the path through the data maze. The example aqsumes that

there are three records in file B, with three records of file D in the first record of file

B, four in the second, and two in the third.

4.3.2 Segmentation

The fields in the data stream must follow each other in the strict logical se-

quence dictated by the data pool structure. This does not mean that the data must be

stored in a strict, physical sequence. DM-1 segments the data stream and incorporates

the ability to store the segments anywhere on the available devices. The logic of the

system permits the segments to be of arbitrary size, but a size of 9216* bits has been

selected for convenience.

In writing data, the fields of the data stream are composed in memory blocks

of segment size under the direction of the Item List. When a segment is full, it may be

stored in any available location of any storage device. The segment is identified by the

Item Poition Code (IPC) of the first item it contains. This IPC is used as the key when-

ever the segment is retrieven.

Each segment is assigned a segment name wbicb is used by the operating sys-

tem to retrieve the segment. DM-1 i~iaintains a Segment Name List (SNL) so that it

may translate an IPC into the segment name of the segment containing the data identified

by the IPC. The Segment Narre List is a file whose records contain the IPC of the first

item in a -gment and the segment's name. It is segmented like any other data, and

the existence of SNL entries for SNL segments permits the system to focus rapidly on

the desired segment through a multilevel, variable depth, indirect addrussing uiechanism.

* The number 9216 Is divisible by 2,3,4,G,8,9,12,16,18,24,36,48, etc. It is a
convenient number for devices with many word lengths.

4-13

,...

EPc

!.•1.1R -1 b |b

1.2.1.2.2 d d

1.2.1.3.1.1 DI R-

1.2.1.3.1.2.1

1.2.1.3.2.2 R12 12

f12 f12

1.2.1.3.3.1 R-3 13 013

1.2.1.4 9l 1

1.2.2.1 R=2 b2 b

1.2.2.2.1 C2 c2 c2

1.2.2.2.2 d2 d2

1.2.2.3.1.1 D2 Rý e21 e21

1.2.2.3.1.2 f21 f21

1.2.2.3.2.1 R=2 e22 e22

1.2.1.3.2.2 __ 12
1.2, 2.3.3.1 R -3 e 23 e e23

1.2.2.3.3.2 f2 3

1.2.2.3.4. I4 e24

1.2.2.3.4.2 f24 124

1 .2 .2 .4 g , t2

1.2'. 3.1 1141 • | b
1.2.3.2.1 (C3 C3

1.2.3.2,2c
1.2.3.23. d31 d3

1,;__,3,3_1_____1[___31
1.2. 3.3.2.1 t1,. 32 32

1.2.3.3,1, 12 f1

1.3.4 3 h

Figure 4-4. Data Maze

4-14

4.3.3 Segment Index

The Item Litt does not contain enough information to allow DM-l to Intorrd

the data strearn, It gives the fixed size (number ot s"bnodes) of records and satsmod

and the size for each fixed length field. However, there are twu levelk of variability

which must be taken into account. The sizes of vqriable length fields may differ from

one value to the next. The Item List contains only one entry for a field which may take

many values. Similarly, the size of a file, i.e., the number of records it contains,

varies from one occurrence of the fi.Le to the next. A file embedded in a I 'gher file oce

in each record of the higher file, but it has only one entry in the Item List.

The segment index, a string of bytes in tue data segment, gives the size for

variable length fields and the number of records for files in the order of the occurrence

of the variable items in the segment. The segment index for the data stream of Figure

4-4 might be:

3 1& 3 7 5 4 20 12 2 8

B cl D1 g, c2 1D2 g2 c3 D3 g3

if the fields c and g are variable length. Since the first variable item encountered in tho

stream is the file B, its size is given first in the segment index. The file has V -ee

records. The next variable length item in the stream is the field c. Its value in the

first record of file B is 18 units (bits or characters) long. The field j has a value whoe

length is seven units. The remaining numbers of the segment index give the sizes of

the field C, the file D and ti: field g for their occurrences in records 2 and 3 of the

file B.

4.4 SAMPLE R ,TRIEVAL

An example will bc used to demonstrate the u.e of the system directories in

the retrieval of an item of datt. The example is somewhat artificial because it is taken

out of context, %nd it must be simplified to highlight the- relationships without burdening

the reaier with undue detail.

SThe PURCHASING item, introduced in Table 4-1, Figure 4-2, and Tables 4-)

and 4-3 will be used as a basis for the example. The directories ior the item are sho',,

in Figure 4-. ,

4-15

TERM ENCODING TABLE ICC ITEM LIST SEGMENT NAME LIST

Identfl'ier Segmert
Name ICC Tyo,,i_ Size _dent___er Name

Cost 12R6R3 1 3 (1) 1 58469
Description 12R4 11 1 V (I) 1.2, R. 2 87,*66

Due Date 12R2 11R R 4 --. j (I) 1..l 42879
Item 11 IIRI 1 V (N) C'ýdt 74346

Item Lst 12R6 11R2 I 4 - 'N) Order 49632
wItem No. 11RI 11R3 E 6 (N) Quantity 89248

_12R6R1 11R4 A V (S) 1 73298
Orde12 12 F V ýS) 1.1,68.4 25321
Order List 13R4 12R R 6 (S) 1. 1. 1J2.2 64843

i P.O. No. 12R1 12R1 i 6 (S) 1.2.5.3 46932

13R4R1 12R2 D 6 (S) 1.2.23.5 65187
Price IlR3 12 R, A V

Porcha ng I 12R4 I 5

Quanttv 12_6R2 12R5 E V

Requ'ýstor 12R31 12H6 V IS) 1.3.10, 87933

13R4R2 12R6R h 3 - (S) 1.3.4A.3 34658
Value 12115 [12R6R1 I V (S) t. ., 64._'1 2 486 1

Vendor 13 12R6R2 I .".3 82 1 52i7 7
Vendor Addir, ijR3 12R6R3 F 7

V ndor Name 13R2 13 F V

Vei dor Nc. I iR2 1DR I1 4
!2R4 A l

132114 1 4
13 H;d A
D:R:! -P4 A V

i3R4]F V
! 3 R4R , 1-1 2

13R4R 1 _ 1 6

131t4 t-,,

Figure 4-5. Dilectories for u.e Purchasing Item

4-16

Suppose that a user wants to retri -ve thp purchase order numbers for pur-

chase orders issued by J. Jones against the vendor whopre number Is 3204. The request

might look i:

RETRIEVE: P.O. NO

.IF VENDOR NO. = 3204 AND)

REQUESTOR = J. JONE6

This request would be handled by the query job; however, the steps explained in this

section. are common to many retrieval situations. The details are greatly Aimplified

and the condition is selected so that an orderly retrieval results. The general condi-

tional search capability, of the system is more comprehensive than this example implies.

4. 4.1 Name Translation

The item names in thc request must be translated to the system identifiers,

the ICC19. This is done through the Term Encoding Table (TET). The TET is a data

filt like any othe-. oata in the system and it is segmented. The names axe translated

to ICC's by retrieving the appropriate segment of the TET and searching its entries until

a match I!- found on the names. This is handled by .system service routine.

The routine firet uses the Segment Name List (SNL) to discover the segment

of the TET to retrieve. The SNL entries for the TET are prefixed with a special identi-

wI

fier. The SNL of Figure 4-5 shows some entries prefixed with (N). These are TET

entries. To translate the namne P.O. NO. , the routine takes these steps:

(1) Match the name against the identifiers in the SNL
until an identifier less than or equal to P. 0. NO. is
found, where the next entry has an ick"'tifier groater
than P., 0. NO. Since the entry sought falls between
the iotiitifiers, it is in the segment identiffed by the
first of the two identifiers. In the SNL shown in
Figure 4-5. the name P.O. NO. is found to fall be-
tween Oi'%DER and QUANTITY. rbw TET segme:,t
containing the entry for P.O0. NO. is, therefore, the
one w-ch begins with the entry for the name ORD~FK
the segment's name is 496332.

(2) Retrieve the segment of the TET"l contairning the deiiirod
entry, arid search the TFiW entrieh until a -Ttatvh ba
found. In the TET in Figure 4-5, the entry for Nou .\

4-17

Is found in the second segment. There are two items
with that name: 12R1 and 13R4RI. Only one of these
is needed. The choice must be made by the use of
qualifiers or by the context of the problem. For ex-
ample, the qualifier VENDOR could have been used
in the problem statement to indicate that all pertinent
items are subsumed by the vendor file. This would
dictate the selection of the ICC 13R4R1 for P. 0. NO.,
since VENDOR has the ICC 13 and is a parent of the
pertinent item.

(3) Follow similar steps for the names REQUESTOR and
VENDOR NO. The consistent set of ICC's discovered
for the three names is:

P.O. NO. = l3R4R1

VENDOR NO. = 13R1

REQUESTOR = 13R4R2

4.4.2 Search Strategy

The structural relationships among the Items in the sample retrieval request

dictate the strategy of searching for the pertinent purchase order numbers. The ICC of

the P.0. NO. field, 13R4R1, contains two record nmbers. The condition on VENDOR

NO. and REQUESTOR is used to set these record numbers to the values which meet the

conditions. The search strategy used In an actual query job is more comprehensive

than the one to be discussed here.

The best strategy is to establish the record numbers which meet the conditions

at the higher level first. This narrows the number of files which must be searched at the

lower level. The condition on VENDOR NO. Is the key to establishing the record numbers

at the higher level. Only those records which contain the value 3204 for VENDOR NO.

need be considered.

There are several ways of determining which records contain the key value.

If the field is Indexed, the system maintains a subsidiary directory table that relates

each value the field assumes to the set of record numbers containing the v.l'.ý-_.' Indexing

will be discussed in Paragraph 4.5. if the field Is noZ rdi , d. tCi ",2. wi.) record

nunmbers arc to be established must be searched tv., determine the re,:ords which contain

the e-y vlu,,. For the purposes of this exzzmnple. vimumc that record nuiober 51 izi

foutad to contain the vadue .3204 for the fold VENINOH NO.

The second record number need be etabliuhed only within record number 51

at the higher level. If the higher file contains 100 records, there are 100 files at the

lower level. Establishing the record number at the higher level first eliminates 99 files

from consideration. Effectively, the ICC of the pertinent purchase order numbers is

translated from 1.3.R. 4.R. 1 to 1.3.51.4.R. 1, with only the record number of we file

to be established by further operations. The condition on the field REQUESTOR estab-

lishes :he record numbers in the lower level file. Again, the subsidiary directory is

used if the field is indexed, or the file is searched if it is not. In this example, assume

that record r.-mber 12 is discovered to contain the key value J. JONES for REQUESTOR.

0"- each level, more than one record number might meet the condition. In

general a multidimensional array of record numbers is developed from a condition. The

array provides the appropriate record numbers for any set of desired items to be re-

trieved under the conditian. The retrieval steps discussed in the following paragraphs

are performed for each set of related items awl! for each of the record number groups

which meet the condition.

The retrieval steps will be discuss-,d for the retrieval of the purchase order

numb,: in the 12th record ol the order list file which is in the 51st record of the VENDOR

file. The condition established these recorat.umbers which convert the logical identi-

fier of the desired field, P. 0. NO., from the ICC 1. 3. R. 4, R. 1 to the IPC 1.3. 51.4. 12. 1.

4.4.3 Data Segment Retrieval

When the IPC of the pertinent item is known, Jhe data segment containing that

item can be retrieved through the SNL. The steps discussed are used for random re-

trieval of any item in the data pool or for initializing an item for serial processing or

random proc-seing within the bounds of the item.

The first step is to obtain the segment name and the range of its data contents

from the SNL. The desired item has the IPC 1. 3. 51.4. 12. 1. As shown in Figure 4-5,

this 111C LlJs between the segment Identifiers 1. 3. 48. 3 and 1. 3. 64. 1. Th. desired item

in within the segment named 34658 with other data ranging bi tween the bounding identi-

tiers.

4-19

The next step is to prepare an Item List Table to act as the structure template

of the part of the data stream contained in the segment. Since both boundaries of the

segment are within the file whose ICC is 1.3 (the VENDOR file), the definition for that
file is sufficient to interpret the entire data stream within the data segment. The seg-

ment of the Item List which contains the definition for the VENDOR file is _etrieved

through the SNL. The segment needed is 42879 as shown in the SNL of Figure 4-5. This

Item List segment is retrieved, and the definition for the VENDOR file is mapped into

the Item List Table.

The data segment (34658) is retrieved and the Item List Table is initialized

so that the system can step through the data stream segment to the desired item. This
is accomplished by stepping down the Item List Table to the entry corresponding to the

first item in the data segment (1. 3. R. 3 corresponding to 1. 3.48.3), thereby setting

parameters which direct the system in further stepping.

4.4.4 Data Stream Interpretation

At this point io the example, a segment of the data stream is available with

the part of the Item List needed t'• ini pret it. The system steps from the Item 1.3. 48. 3
to the item 1.3. 51. 4. 1'4. -, whijh is the desired purchase order number. The stepping
is accomplished by 6umtnmug the sizes of each item preceding the desired item to develop

a pointer to the precise, ý acatf:vz of the desired item within the segment. The sizes of
fixed length fields, r-co•c•, mdi sta.ementL are obtained from the Item LsW Table. The

sizes of variable length I eldk .ind files are .)btained from the segment index. Sizes are

accumulated and the IP: of eac& item is developed until the IPC of the desired item is

reached. TAe value for tis item ma% be extracted for display or processing.

4.5 INDEXING

,n optional feature offered by D2M-1 is the abi3.ty to index selected fields. When

a field is uinexed, the system maintains a subsidiary directory table relating the values

assumed by the field to the numbers of the records in which those values occur.

The indexing ieature prov, 's a tradeoff between the speed of retrieval and the

size of storage required. When a field used in a condition is indexed, the system can

focus very rapidly m the pertinent items without searching the daita stream. This is

4-20

accomiJ.ished oy maintaining Fielcl VLtue Table tFVT) and an R-Value Index Table

(RVITM which occupv -d1.dh*,,onl stor:ge qre and must be updated ,.acl time a change

is made tc '-cw a' if values fe- tbe 4d.

t'he payoff for 'i:dexing a field is readily apparent when the alternatives avail-

.J ., wni neystem a "lierpreting a c:.ndition are investiated. In the preceding section,

L:-"a': A example inciudlJ the condition:

VENDO•! NO. - 3204

T'1•- ý`:,utc VENDOR NO. -",curs In each re-rd of the VENDOR file. 1here may be

.andred& of such records. Since each recurt,! -ontains a subsumed file, the occurrences

oi the VENDOR NO. field are wijely dispersed through the data stream. If the data

streain muiz be setrched to determine the records which meet the condition, there is

a high likelihood thal a different stgnment retrieval will be required for each record to

oe checked. This amounts ý several hwunred segment retrievals.

If the VENDOR NO. ficild is indexeu, the values it assumes are stored in a

compact file with a link to the list of recori ntunbors which contain that value. There is

a high likelihood that the fi ,-st segment of the FVT retrieved will contain the desired

value. If there is only one record meeting the condition, its value is stored in the FVT

and the search is finished with one segment retrieval. If there are a number of records

with the key vwlue, the list of record numbers is maintained in the RVIT. A link in the

FVT entry for the key value points directly to the record number list. In this case, the

search is accomplished with two segment retrievals. Either way, the time saving is

great. ThU payoff is greatest for records of fil.a at a high level which contain embedded

filet, and it improves as the n'unber of recoris in the file increases.

An indexed field is tagged in the Item List with a code specifying the type of

indexing: all valuas, ranges, or selected values. The Item List entry for an indexed

field contains a record number which identifies the specifli- Field Value Table for that

field. WAhn the system needs to determine the record numbers for the occurrences of

an indexod field which cimtainB a given value, the record number in the item List entry
converts the 'CC of the FVT, 1. 2. %. R. 4, to an IPC. The corrvet FVT can be retrieved

directly, and the entry containing the given valae can be found. This record contains

the record number sought, if there is only one occurrence of the field with the given

4-21

value. Otherwise, the FVT record contains a record nuraber identifying a specific

RVIT file which contains the list of record numbers for the occurrencea3 of the field

which contains the given value.

4.6 LINKAGE

The data pool is basically a tree structure. Each node has a single parent

node and may subsume a number of subnodes. In order to relate separate items in a

tree structure, they must branch off from a common stem of the tree at the point they

have in common.

Figure 4-6 (a) is a node diagram of the pure tree structure for the PUR-

CHASING item (Figure 4-2). The fields in the VENDOR file, VENDOR NO., VENDOR

NAME, and VENDOR ADDRESS, are related because they are all attributes of a vendor.

The list of outstanding purchase orders agai'st the vendor, ORDER LIST, is also an

attribute of the vendor. The relationship among these four iterhs is shown in the tree

structure by placing them as direct subitems of the record of the VENDOR file. The

fields of the purchase order file, ORDER, and the list of itenns ordered have a similar

relationship. They are .1l1 attributes that describe a purchase order, so they are de-

fined as direct subitems of the record of the ORDER file.

The VENDOR file and the ORDER file are two elements of purchasing infor-

mation. This relationship is shown in the tree structure by subsuming both files dir-

ectly under le statement PURCHASING. however, there is a.aother relationship be-

tween the two files which is not shown in the structure. All the attributes of t purchase

order are pertinent descriptors for the purchase orders in the list ror a given vendor.

This could be shown by placing the entire set of purchase order arributes in each

record of the file ORDER LIST. This results in a gross redund~u,-.,y if the existing

puxchase order file is retained. If that file is eliminated, the purchase order infor-

mation is available in the VENDOR file, but it must be grouped by vendor in that part

of the tree structure.

It can be assumed that the high activity use for purchase order information
is accomplished more conveniently if the ORDER file is retained in purchase order

number sequence as a direct subitem of the PURCHASING statement. Also, the detailed

attributes af a purchase order are needed only rarely when processing the VENDOR file,

4-22

Purchasing

Item No. Vendor Price IDe.-criptionNo.

VendorItem List

110. No. Due ilequestor Vendor Valuie
SDate No.

Order List

Vendor Vendor Vendor Item No. (Qantity Cost

No. Name Address %

I'P.O. No. Itequestor

(tI) Pure Trre Structure

Purchasing

Vend,.r •-Item
//Lists

Vendor Vendor Vtotor / /, I Item Vendor Price I)escriptlion

No. Nanm AddessN. No.

/ No.

Item No. ?/uan-ity N,

(hJ LmIt'd Network

Figure 4-6. Tree ain Network Diagrtams or the Purochaamt Item

I ~4-2=3

and such information is superfluous most of the time. In such cases, a logictl link

can be established to cut across separate branches of the tree structure. The link shows

the relationship between its source and target items and allows it to be exploited while

eliminating the redundancy of duplicate items and permitting the high activity data to be

stored compactly. The high activity data can be processed much more efficiently when

superfluous data is removed to a logically independent node, yet rarely used data can

be associated with the source item when it is needed.

Figure 4-6 (b) slhouz the same ,u'rchasing information in a structure which

makes liberal usc•J links. MA.%re c' the relationships among the items are shown with

less redurdancy. The sarne item is shown in the structure diagram in Figure 4-7. The

VENDOR file contains only the fields which describe a vendor. The list of purchase

orders against the vendor has been replaced by a link to the records of the ORDER

file. Each record of the VENDOR file is linked to the set of records in the ORDER file

which have a VENDOR NO. field equal to the VENDOR NO. field of the VENDOR record.

Logically, each VENDOR reiord subsumes a purchase order file for one vendor, with

the full set of descriptors for each purchase order. Yet the VENDOR file remains a

compact list of vendors' attributes and no duplication of data is required. The ORDER

file may be maintained vithout rc ference to the VENDOR file. The set of records

associated with a given -3ndor ic automatically redefined by changes in the VENDOR NO.

field (the link criterion) n the ORDER file.

Similar lin" have beeT1 established in Figure 4-7 to relate other items. The

ORDER file contains a link to a -ecord of the LISTS file where the list of items on that

purchase order is mairn:ined. The link criterion is the purchase order number. Also,

each lem in the ITEM IIST file is linked, by item number, to a record in the ITEM

file. This makes the full iten. description logicidly aval:able with each item on the

urcbhase order withou cluztering the ITEM LIST file for the majority of uses.

A link connects two items, i. e., a source and a target. The bource link is

an iterr with some charac:•'ristics of a statement. It subsumes the link criterion, a

field %nose value is the kv, to closing the link. The target link subaumes the criterion

field in the target branch .! the tree. When the values of the criterion field are- equal

in the source and target :inks, the target link's parent item is logically subsumed by

the source link. The sot-ce link operates like a file whose records contain the items

4-24

00

Sd

4-2

of the target structure for each occurrenc" of a match between thie source and target

criterion values.

The system follows a link through a subsidiary di-Pctory, the Linkage Table.

A link item contains a record number in its Item List entry. This leads to an entry in

the Linkage Table, which contains the ICC of the matching link. Both scurce and target

links have entries in the Linkage Table, permitting the system to follow a link in either

direction. The target's substructure is subs~uned by the source link, and the source's

superstructure subsumes the target link.

4.7 DATA INTEGRITY

A data protection system mw provide for safeguards against accidental or

malicious actions of authorized and no ýathorized users and data destruction caused by

hardware or software bugs (including failure of the data protection system itself). This

objective can be s-ated in terms of the following sub-goals.

(1) Data Security Checks must be provided to protect the
user against invasion of privacy by protecting his data
against unauthorized read and write operations.

(2) Data Validity Checks must be provided tc protect
authorizediusers against coUisions of data usage in a
time-shared common data base and to protect the data
base against dllegitimate modificatioa by authorized
users.

The data protection mechanism is built into the resident reentrant Service

Package which responds to all user data access and storage requests. Since these rou-

tines perform all dataa.access wnd storage operations for all users, the constraints with

regard to data usage for these routines must be inherited from their parent jobs and

not be inherent in the routines themselves.

1 Security Safeguard

The system of data protection employs two separate but interacting mechan-

isms: security level, and acce',s/modificatian rights. Each data item class is assitg-d

a security level for access and another level for modification from one of eight classi-

fications.* Likewise, each user ceives a clez'rance level which gives him access and

* In practice, security levels wiil range from 0 (unrestricted, to 6 (highest restriction),
and clearance levels will range from 1 (lowest clearance) to 7 (no constaicta).

4-26

modification rights to all items below his level. His rights to items cLssifled at his I
level or above depend upon whether or not the item requested is on his access-rights or

modification-rights list. A table of such rights, negotiated with the Data Administrator,

is maintained for each user. A message to the Data Administrator is prepared for each 1<
unauthorized access or modification attempt.

Two degrees of access/modification rights will be recognized. The simpler

is a right to a class of data given by item name, such as a file. A more discriminating

right is to a particular subset of records in a file, where the subset is made conditional

on a data check. An example of this is the right to specific raw data such as test re-

sults only if the data satisfies a condition, such as a given value in an identity field.

4.7.2 Validity Safeguard

The approach to access or modification rights solves the problem of data in-

tegrity with regard to controlling access against unauthorized users. However, by itself,

it does not protect the data base against destruction of data by system failure oc yv author-

ized users acting on the basis cf invalid information. This aspect of the integrity-ensur-

ance problem is solved by a combination of devices and procedures which hinge on the

ability to identify and recognize the edition (or "generation') of data, both on an absolute

basis and on a relative basis, i.e., relative to a specified "current" edition.

Edition control provides the ability to detect and control collisions in data

usage arising from noncoordinated, overlapping read and write operations by independent

users of a common data base. A graphic example of collision of data usage arises in an

on-line reservation system in whtlJh two agents attempt to reserve the same space. When

the agents query the system for space availability, the reply contains an edition number.

When a reservation is atter-Ated, the transaction must cont!,In that edition numblAr, which

Is checked by the system and incremented when the space status is updated. The reser-

vation is then confirmed to the agent. An independent attempt to reserve space on the

basis of the original status message will be rejected as the edition number check % ill

fail.

4.7.3 It-em Lockout_ (Bsybit)

Comprehensive data maintenance operations which perform structural modifi-

cations over multisegment data sets present additional c,•nflict and protection requirements,

4-27

i i o rti~o)s :f thvri~l ,Jtý '... rig wflv, iiied is used ianf-x'-, vkttly dh ri ig dwe m.0li11i

tenanve jperitior.. To orovide for such protection, t.mporur data lockout is provided

hy .i "inuF-rvt" in the SN I. entries 1o, the dat:t 'cing modified, This bit, set xid rvsvt

at Le request of a maintenance job, effectively locks out use of any d'ata in a class during

the tine the privileged maintenance job is running,thus ensuring that all data delivered

to users is consistent with the Item List.

4.7.4 General Procedure

'Ihere are two three-bit fields in each entry of the Item List assigning security

restriction levels to the item, one for access and one for modification. Level 0 will

designate unrestricted data and level 6 will designate the most highly restricted data.

Restriction levels are assig-ect sc as to he nondescending when moving from an item to

its parent item. Each user is assigned a clearance level which gives him unconditional

access to all data whosc restriction level is below his clcaranee level. Access or modi-

ficaticn to data class, 7_:cI at or above the user's clearance level is conditional upon

whether the data belongs to the. class of data for which the user has specific rights (Open

Class) or i.iýzets a conditional check for unique items (Field Condition).

A L.ser can V assigned a Liass of data items or specific data items expressed

as a field-value condition, for which he has explicit rights. A rights check will be made

only if a data request fails the clearance check. The usual rules of inclusion of items

in an item class hold for the rights check. In the case of a field-value condition, the

user is permitted access only to those records containing a fiela whose value is specified

in the Field Condition list in his entry.

4.8 TIlE DATA POOL

The data pool contains all Items of data under the control of DM-1. This in-

cludes the data base, the tystem directories and job library, a set of application-oriented

work items, and a set of transitory scratch items for task-to-task comm', .ýation of in-

termediate data.

Figure 4-8 shows the entire daia pool as a statement subsuming four items.

4-28

ý_D 7---

rcjtory'

3 "Work Area•

4 ratch Area

Figure 4-8. The Data Pool

'The data base is a statement whose substructure is defined as the system

evolves fol a given application. It is under the control of the Data Administrator, wnd

it represents the primary data resource of the system. The data base is the consolidated

repository for data to be used in common in serving the information needs of the user
group. Its structure miglt be relatively static after the initial transition period, butI
the data values change constantly to reflect the changes in the operations, events, and

objects about which information is retained.

The directory is a statement whose sibst-ructure is defined the same way for

any application of DM-l. It contains the system information describing the data poo!

and the programs under the system's control. The Item List, Term List, Term Encoding

Table, Segment Name List, index files, link tables, data integrity tables, and Job library

files are all subitems of the directory statement. The structure uf these items is con-

stant. Section II of Volume II ci,-"ribes the structurp of of , Z - '

dut-. " .a the directory are changed by system jobs and routines to reflect changes

In the structure of the datta pool, segmentation of the data stream, composition of th, io')

library, etc.

The work area Is a statement which subsumes application-orieinted items. They

may be private files developed from some operations on the data base or items used by a

class of users. The work area is the repository of data to be communicated from Job to

4-29

Dob Dta derived hy querYýIng tbfs flajt a pcool or, developee In a user or x ystetn ,ofb MU*

Ibe stor.-.d in thie %-ýork area, so that it can be used as inIput to LAte r jobs.

The structure ot the wnrk are~a evolves under the dii ection of the systcm,';

users. Some items are defined by users and are used to contain relatively perinanent

data. Other itemns are defined by users and are used repeatedly to accept the output of

a frequently calle(: I . Still other items In the work arca are defined by programs

which create items in perforwi.Ag their function. For example, the query job defines

the structure of the item it produces, based on the request. Its outpu;: might be stored

as a work item with a user-assigned name and a prngram-assigned structure. On the

other hand, a frequently requested query might be bound to a 1prestructutre item in the

work area at the user's request. The data in the work area changes primarily as a

result of the execution of jobs whose outputs are bound to work-area itemns by the user.

The scratch areý. 's a statement which is used to 'i.ontain transitory items.

These are items which are intermediate rtcsults in the execution of a p~ar ticular job.

Such items are created by the sy.stern in preparing for tie job or during its execution

and -'ire deleted by the system at the end of the job. Tlae substructure of the scratch

item's statement is constantly changing to reflect the temporary storage requirements

of the set of jobs being executed. The data valuer, in scratch items are written by tasks

of a job, read back by the same or other tasks, and destroyed with the. corresponding

structure definitions at the job's termination.

4.8. 1 Sti ucture D~evelopment

The data base must be designed as a structure independent of its data content.

The components of the structure are defined to the system with an itemn-definition r~uuest.

An item -definition request is a call for the exemi~tior of the system job Define-ltell1.

The parameters of the job arp a node specification and an. item Image. Tho. node speci-

fication identifies the node In the already existing structure of the data pool at which

the new structure is to be placed. It gives the name of aI reference itxrm and the ncw.%

itern's reation to it. At first, only the statemnents D)ATA BASE and NVORK AREA can be

affected by an I ten- -definition request. Any definition to bie added must txý the definition

for a subitem of one of these statemruito; that is, the new ifien must be a file, statement,

or field which is to be subsumed directly by the statement DATA BASE or the statement

4-30

S~I

WORK AREA. O•c sone subite'ns of thepe istatements exist in th.i structure, a new

item may be added as a subitem o! any statement or record at any level in the data base

or work area.

The item image in tn item-definition reouest r retains thp name, item type, and

other paramcters for the item and each of its compoiient Items. [lie item image may be

an indented outline, as shown for tnc V'URCH.LViNG item in Table 4-1, or a parenthetic

string.

An item may be deieted from 'he btructure by a call tor the execution

of the system job Delete-l)efiAtou. The only parameter of the job is the name of the

node at which the structure is te be deleted. The job eliminates all subitems of t'Vc

referenced node and converts the node itself to a null node. A new item may be placed

.at the null node by a later item-definition request. If the node itself is to b- deleted,

the Delete-Node job is called instead of the Delete-Definition job. The only I
way the structure of the data base can be modified is through the use of the system jobs

for item-definition rr.adntenance. The structure of the work area may be modified by

these jobs also: however, work-area structure may also be defined indirently. When a
user calls any system or user job which produces an output item, he may request that

a work-area item be automatically generated to serve as the job's output. 4'e does this

by supplying a name for the item in the jou request and signalling that the structure Is

to be generated as a work-area item. For example, if a user calls the Query job to

retrieve selected items under a given condition, he mnay have the results stored as a

work-area item. This can be used later as input to some other job.

4.8.2 Data Manipulatiou

A -.- :as of ystem maintenance jtos gives the user the ability to affect the

data values in items of the data base or work area by commands issued at a console.

The user may add or delete specified data values, modify values according to an arith-,

metic expression, or update a master file with values from a transaction file.

The item to be affected by the data mantpulation job is specified by naming

the item and providing a condition. The condition specifies the pertinent occurrences

of the item within its parent files. For example, a condition night be used to identify

the purchase orders of a given vendor, so that a data change would be applied only t, them.

4-31

SThe Replacc Data job replaces the values in the specified data Items with

the value of a source item. It can replace a field, statement, record, or file with new

values for the item and all its subitems. If the condition specifies more than oure occur-

rence of the items, W occurrences are replaced with the same Fource value. The Add-

Data job functions the same way, except that the specified items r tst be empty (null

value).

The Delete-Data job deletes the values which meet a given cor dition. The

job converts all such values to null. If no condition is given 'he entire set of values for

the item is deleted.

The Modify-Data iob develops q now value f-r , cpccified field. The iuw

value is the result of -.. arithmetic expression relating existing values and constants.

This value replaces the value I,, all cccurrences of the field which meet the condition.

The Update-Data job updates a master file with values from a transaction

file. Each rperd of the transaction file contains a key which identifies a record of the

master file. Other items of the master file are replaced with the valves from the trans-

action file.

4.9 CONDITIONAL RETRIEVAL

The fundamental strategy of DM-1 is to store data so that it is accessible to

meet the information needs of users and programs. These needs are to be met by supply-

ing to the consumer precisely that information which is pertinent and unencumbered by

a context of irrelevant data. The -ibtlity to achieve this goal is provided by the conditional

retrieval facility in concert with the system directoLies.

In a conveiitlonnal svstert infnrm!!o. t.. cldd..i ;ItLn a file can be extracted

by a prograný that contains within itself two kinds of implicit information: the implicit

description o, the file structure and the implicit procedure for discriminating between

relevant and #-irelevant data. In DM-1, an explicit description of the entire data pool is

maintained in the system directories; it can be used repeatedly In response to the full

range of information needs. The aWstraction of relevant Information from a broad con-

text in the data pool is the function of the system progruns for conditional retrieval.

4-32

II

4.10 THE DIjALOGUE

A user Rpproachi• ÷t.• DM-1 data pool with an information requirement need

not know the complete specification for the information. The system can help him to

define the relevant items and the selection criterion through a dialogue procedure. The

user is presented with a succession of multiple choices. Each time he makes a selection,

he is presented with a more specific set of choices until he has defined his information

requirement. This dialogue procedure encourages the user to probe the data pool to

discover information relevant to his problem. In this mode of operation, he is in a

position to apply his judgment continuously as he pursues a line of inquiry. The feed-

back .t each stage in the process affects both the direction and degree of additional effort

he devotes to the inquiry process,

The dialogue takes place in two phases which corresport, to the 'wo levels of

definition of pertinence for information. In the first phase, ihe user is asked to choose

the items which define the object, event, or operation about which he needs information.

In the second phase, he is asked to provide criteria which pinpoint the individuals of the

class of items selected in the first phace.

The tree structure of the data pool is the key to the dialogue procedure. When

the inquirer indicates that he wants a dialogue, the system presents him with the names

of the items on the highest level in the structure and asks him to select one for further

probing. These are generic names which segregate the data base into logical groups.

When the user selects an item, he is presented with the names of the items subsumed

by that item, and so on, until he steps to the area of the data base containi;ng the attri-

butes of the object in which he is interested. He defines the relevant attributew .•J

proceeds to the second phase. The process permits the user to backtrack, correct,

and proceed at any point.

In the second phase, the user is asked to select the properti of the object

of interest which determinA the relevant individuals. Each time he selects an attribute,

in asked to enoose a value and a relation which defines the property the relevant item

should have. If an attribute is indexed, the inquirer is presented ponsible values in

digestible groups and he choos(the pertinent values. Otherwise, he is given -n example

of a i due and asked to key in the pertinent values. Each term of the condition Is de-

veloped by this procedure.

4-33

Based on the user's response to the displays, the logical operators relating the
terms of the condition are inserted by the system. The user is guided to narrow the search
by adding terms until a sufficient condition is developed as a logical product. He is then
given the opportunity to broaden the condition by supplying alternative properties.

4. 10. 1 Uses of the Dialogue Procedure

The dialogue procedure may be used to fulfill a number of information needs

with respect to DM-1. It may be used to support other elements of DM--A which function
with a condition. The identification of the individual data items to be affected by a main-
tenance operation is accomplished with a condition. The selection of data as input to a
job in a job request may also be conditional. The dialogue can be used to probe the data
pool to define the precise elements for these conditional operations by developing a

condition with system guidance.

An inquirer who approaches the dialogue with the need for an answer from the
data pool elects to go on to a retrieval job after the dialogue. He specifies that the results

are to be displayed to him or printed on hard copy.

A user ,vho wants to perform further analysis on the information he has selected
"also selects a retrieval job as the last stage of the dialogue. He provides a name for the
information and requests that the resultb be stored in the work area for further processing.
He may specify a structure for the results, or he may accept the structure derived by the
retrieval job from the relationships among the desired items in the data pool. When the

retrieval iA fini shed. th . a we 4 ti l, - m i.; avasil-ble in the work area. It may be
bound to atiy job for further processiiug by specifying the user assigned name,

Another user might have some new data to be added to the data pý:xA, or he
might have some other maintenance operation to perform. If he is uncertain ot the pre-

ciao nodes in the structure which should be affected by the operation, he may perform

a dialogue. While determining the structure in the pertinent area of the data pool, the
user may develop a condition which defines the precise data he wishes to change. Hie may
request that the condition be stored with an asigned name. Atter the dialogue, the user

may call the appropriate maintenance job and refer to the condition by name.

4I-3

ThcIc examples show the range of uses for ýhe dialogue procedure. Its primary

value is to help the user of the system to formulate a specification of his information

needs. But it may be used for purposes that range from a review of the structure to the

development of L private Me for analysis.

4.11 RESTRUCTURING ITEMS

Restructuring is the process of mapping data from existing structures into an

object structure, under the directions of a specification relating item,, of the object

structure to ltcms of the source structure. Restructvres are performed in DM-1 ior a

number of reasons. Among them are:

(1) To permit data to be collected conveniently in a form
that is compatible with the source documents. Once
the data is in the, data pool, it can be transfo rmed to a
format that is oriented to its consumers.

(2) To adjust to changing usage patterns. The history of
usage for certain items might dictate that they be organ-
ized differently to improve the efficiency of operations.

(3) To prepare data for analysis. A subset of the data pool
may be selected conditionally and formatted into a struc-
ture that is convenient for processing. The resulting
item may be retained in the work area and bound as input

to any job in the library.

(4) To transform e _', _ '_• *ie structural requirements of
p ograms. Pruvgrs which were not designedtointer-
face with each other rrLy be cumbined in the same job.
An output of one program may be bound to an input of an-
other if a restructure program ib capable of transforming
the item into the format required by the second programn.

(5) To bind existing data toa a job request. This Is
similar to the task-to-task ommunication situation
presented previously. When a user wishes to run a job,
the data may not be in the appropriate form for the job.
His job request may specify that the data be reconstruc-
ted to put it into the appropriate form.

4-35

.SECTION V. OPERATIONAL FEATURESI

IIII

DM-1 is concerned with the management of a large, integrated data pool and

its use in meeting the inform-ýtion needs of consumers. The system features associated

with data pool management cannot be divarced from the operational features which pro-
vide the framework :or interaction between the system and the user. The operational

aspects of the system define the means for the specification of system languages, the

development of the job library, the binding of data to programs, the management of Job

executwio, and the servicing of the data needs of programs.

5.1 SYSTEM LANGUAGr, SPECIFICATION

The nwans of communiication between DM-1 and the system's users is through

system languages. Descriptive languages specify itj~in structures, report tormutts, pro-

gram parameters, etc. Declarative languages contain the data of the &bystem in external
or internal format. Command languages evoke actions by spectifing jobs to be executed
and supplying parameters which affect the execut~on.

Each language type must be revonized at the appropriate level in the system

by Urn appropriate prooessor. The processor must be constructed to respond to the

5-1

iiiI

meaning of the language (Eemantics) by performing tie appropriate a-CtLITnS (paMt-altics).

The semantic6 and pragmatics of the laaiguage are closely interwoven with thc? logic of

the processor. However, just as the DM-1 appr'ýýaci separaites the format of the data

from the logic of the program, the sysieti, separates, the languan- coi~struction (syntax)

from the logic of its processo'_.

The syntax of a tystem language may be described, in iT eta~language similar

to the metalanguage of ALGOL. 'Thc language descriptio'r Ns - intainied by T)M-i in a

table called an action-graph. External languages ,re processed through the Inpu~t Scan

Routine (INSCAN), v,,hi.:,h uses the action graph to direct the Plow of logic. The external

language may be converted to a&, internal form or interpreted directly by the execution

of routines at action Points in the syntax-directed scan.

5.1.1 The Metalanguage

Theý metalanguage is a language for describing th(sy o ax of languages. DIM -

ubes a charting technique to describe the constructH".n rules for the components ofI

1,9, The syntactic chart can be converted directlY to an action-graph. This ap-

the language processor from the litnguage construction rules. The syntax

,lay be changed without affecting the logic of the processor. A change

ed by changing the action-graph.

syntactic chart describes an element of a laiiguage 1)y showing the symbols

L ~e order in which they occur. F'ýr example, a condition statemient consists ol
-AJtermb connected by AND and OR. A term may b_- a primitve termi, giving an item nallii,

a relation and a value, or a smaller condition statement in parentheses. U'ignr", 5-A

iti the syntactic chart for a condition statement. The chart says th'tt a condt'ion statement

is a term which maky be followed by AND or 011. If the ttermi is followed by AND) or ORl,

the next part of the condition statement 'must be another term. Whc-n a termi is tot fol-

lowed by AND or OR, the coadition statement its finished.

Figure 5-1 (b) is the syntactic chart for a. term. There tire three choices for

a term. It may be at NOT followed by a term; an open parentheszs, followed by :1 (ond'-

tion statement, followed by a closed parenthesis; or a primitive termn. The action graph

for u primitive term (not shown) would specify an item name, followed bY it relationa-l

operator, followed by a value.

A

NI

Condition
Statement E'

(a) Condition Statement

(Term

,:) Term

Figure 5-1. Syntactit Chart

i-3

There are seven sIbapes used in a syntact!c chart. They can be converted

directly to codes in the action-graph table. The chart may include action points which

permit the execution of routines of the language processor in the midst of the scan.

The Input Scan Routine and the acti'n-graph tables are discussed in detail in Volume II,

Section VIIL

5. 1.2 External Definition Languages

The structure of ar, item may be presented to DM-1 in an indented outline

language or in a parenthetic string. The indented outline language is 'ilustrated in

Table 4-1. Its syntax is quite simple, and its syntax chart consists of a simple element

with several action points to count the level of inciontation.

The parenthetic string lbaguage specifies the structure of ar item it. an item

image. The item image use~s parentheses to delimit a etatement and double parenthc:;cs

to delimit a file. The slash is used to separate items on thc same level in tho stru'ture.

Figure 5-2 shows two structure diagrams and their corresponding item images. The

first is a statement subsuming two fields, a statement, and another field. Its item image

begins by giving the statement's name and its types. The rest ef the item image, from

the left parenthesis following the S to the last right parenthesis, describes the subitems

of the statement. The field a is described by giving its name, type (1), and size. This

is followed by a slash to signal the existence of another item on the saie level. The

field b is described and is followed by a slash. The statement B is described by its name,

type (@, and the subitem description within the parentheses. The specification ends with

the description of field e anu the right parenthesis that closes the statement A. The other

example is a file whose subitems are described in the same notation.

Figure 5-3 Is a syntactic chart for an item image. It describes an item Image

as a name, followed by a comma, followed by a choice ir the item type. If the type is a

file, the rest of the item image consists of a left narenthesis, followed by a statement

specification, followed Ly a right parenthesis. If the item Is a statement, the rest of the

item image is a statement specification. If the item is a field, a field specification fol-

lows. In practice, the syntactic chart would contain references to actions to be takamn at

various points in the scan. These references call on routines in the language processor

to be executed when conditions io the input string warrant it. These action points are

not required in Figure 5-3 to specify the syntax of an item Image.

5-4

fA
E. I, .

bd, 7,

A, Sa, 3, /,b, E, 7/B, S~c A, V/,I, S)/e, A,4)

AA

B*1

!A, V

cf

A, F(B, S a,A, VC. F((b,1, 3/c, 1,V))dF, E, E, V)

FWgur 5-2. Structure Diagramsi with Item Image&

ii"5

Itcrn

Image N

A ~~~(Fle' Cdaemn

ps

(State m- Sttte

(b)Stteen

KA BieYlFel

(Field)l

Figure -3. Synactc) ar Item Images

Item

Stte en.I ag

(b)llle en

i5 -

5.1.3 Use of INSCAN with an Item Image

An item image is scanned by INSCAN when the subroutine is called by the

language processor. The calling sequence identifies the text to be scanned and the

action-graph to drive INSCAN. Suppose that INSCAN were called to scan the item image

for the second structure of Figure 5-2 with the action-graph derived from the syntactic

chart of Figure 5-3. INSCAN steps over the item image, a character at a time, respond-

ing to the tests specified in the action-graph. The steps of the scan are described below:

(1) A. The first element of the input string is the item
name for the file A. This passes the first test in the
syntactic chart ITEM IMAGE.

(2) The next test specifies that the character after the
&em name must be a comma.

(3) F. Following the comma, the syntactic chart offers
a choice. The character may be an F, or S or one of
the field types. In this case, it is aF, w~ich indicates
that the item is a file. The other choices are not tried,
and the scan continues with the box following the teEt for F.

(4) •_ When the item type is F (file), the next character must
be a left parenthesis. The structure oi the records of the I
file will be specified by t-'e statement image contained be-
tween this parenthesis and the closing parenthesis of the
entire iiem image. This structure is specified by the
characters:

(B,S(aA, V/C, F((b. I,3/c, I,V)))/d, E,4/e, E,V)

This is a statement and the ITEM IMAGE chart specifies
that the STATEMENT chart should be used to scan it.
INSCAN saves a return point to the ITEM IMAGE chart
in a return address list and control passes to the STATE-
MENT chart.

(5) £. This is the left parenthesie of a statement (or record).
Is detected in the first test in the STATEMENT ehart.

The statement (or record) consists of a series of subitems
seprated .y slahes. Each subitem is itself an item image.
The STATLMENT chart uses the ITEM IMAGE chart to
scan ea,'h itn. - e- ;.* ITEM IMAGE chart is called,
INSCAN pualse down the return address list, saves the re-
turn po4ntto the ST . c-;YE!T chart and control pasfex to
the ITEM IMAGF chart to scan the first item in thý" statement:

BS(a, A. V/C. F(bl,13/o,IV)))
Each time INSCAN reverls to another chart (actiou-graph),
tho return addrs tint is pushed down. The original chart,

5-7

ITEM IMAGE, was scanned on level 0. The STATE-
MENT chart was scanned on level 1. This call to the
ITEM IMAGE chart places the scan on level 2. The
levels continue to increase until a chart exits. Then
the level is decreased by one and control passes to
the return point on the chart which called the exiting
chart. When the level is 0 and a chart exits, the scan
is completed.

(6) B S. These characters are scanned by the ITEM IMAGE
c ;rt on level 2. Since a choice exists for the type (F or
S or f), the routine finds a match with S after failing the
test Uor F. Since the item is a statement, the, ITE M
IMAGE c-hart calls for the STATEMENT chart on level 3.

(7) .. The statement begins with a left parenthesis. The
STATEMENT chart then calls the ITEM IMAGE chart on
level 4 to scan the first subitem of the statement:

a,A, V

mm(8) a. These characters ere scanned with the ITEM
IMAGE chart on level 4. When the first two tests for type
fail, the test for a field 1W applied. A is one of the valid
field types so the test succeeds. Control passes to the
FIELD chart on level 5.

(9) V. The comma is the first character after the type on
-a ield specification. This is followed by a choice of V
or an integer specifying the size of the field. V stands
for vartaLle length.

The next element of a field specification is a comr-:a if
a unit designator is given. Sit, e the next character in
the input string is a slash, no unit specific.tion is given.
The FIELD chart exits bringing the level up from 5 to 4.
The return point is to the ITEM IMAGE chart at the point
after the call for the FIELD chart. Since the ITEM IMAGE
chart has now scanned the t.'mplete item image for the
field:

aiAV

This chart also terminates. It was on level 4 so the level
is decreased to 3 and control passes to the STATEMENT
chart at the point after itx call for the ITEM IMAGE chart.

(I0) L. , compl-tion of the ITEM IMAGE scan for the firot
subitem of the stAtement B plaoes the STATEMENT scan
on level 3 where it beaanwTn step (7). After any subitem,
there may be another subitem or the end of the stitement.
This is the reason for the cboioe between / and) as the

=._ ii= : ---

• mml _.

I

next character. Since the- is another subitem in the
statement B, the slash is detected and the chart trans-
fers on the same level to the call on the ITEM IMAGE
chart to scan the next subitem on level 4.

(11) C F(. These characters are scanned with the ITEM
ifGE chart on level 4. Because the item is a file,
the first parenthesis Is checked and the STATEMENT
chart Is called on level 5 to scan the subitems of the
records of the file.

(12) J. The left parenthesis begins the record specification.
The ITEM IMAGE chart -j called on level 8 to scan the
first subitem of the recoid.

(13) b. 1 .3 These characters are scanned with the ITEM
IMAGE chart on level 6 and the FIELD chart on level 7I
in the same way as the previous field was scanned.
When the field specification is passed, control returns
to the STATEMENT chart to complete the scan of the
record's subitems begun in step (12).

(14) L The statement chart detects the slash and calls the
ITEM IMAGE chart to scan the next subitem on level 6.

(15) c.,V These characters are scanned with the ITEM
IMAGE chart and the FIELD chart. When the scan in
completed, control returns to the STATEMENT chart
on level 5.

(18) L.The right parenthesis marks the end of the record
structure for fle~ C. The STATEMENT chart exits to
the ITEM IMAGE chart on level 4. It returns to the point
behind the call on the STATEMENT chart to scan the
record of file B. TIN. continues the ITEM IMAGE scan
begun in step (11).

(17) L.This parenthesis marks the end of the item image
br file B. It is detected with the ITEM IMAGE chart
which silts to the STATEMENT chart on level 3. This
cointinues the STATEMENT sLb... begun in Coep (M.

(18) 'This parenthesis marks the end of the statement B.
Yhbe STATEMENT chart returns to the ITEM IMAGE
chart on level 2. Since this is the end of the item image
for the statement B the ITEM IMfAGE chart exits to the
STATEMENT charTon level 1. This conttnu,&s "b. moan
of the subitems of the record of file A begun in step (5).

5-

i4

(19) /. The slash means that another subitem follows, so
Die STATEMENT chart calls the ITEM IMAGE chart
on level 2 to scan the next subitem.

(20) d,E,4. These characters are scanned by the ITEM
IMAGE chart on level 2 and the FIELD chart on level 3.
When the scan is completed, control returns to the
STATEMENT chart on level 1.

(21) /e E V The slash is detected by the STATEMENT
cart *it carls the ITEM IMAGE chart to scan the field
specification. Control passes back to the STATEMENT
chart on level i after the field is scanned.

(22) L. Te right parenthesis (next to last in the string)
marks the end of the record of file A. The STATEMENT
chart has completed the scan begun in step (5). It exits
to the ITEM IMAGE scan which continues the scan of
the file A begun in Step (1).

(23)). The final character of the item image for file A is
Lhe right parenthesis. It is detected with the ITEM
IMAGE chart on level 0. When this chý.rt exits, the
scan is completed because it was the language proc-
essor which requested the scan of the item image for
file A rather than another chart. The routine exits to
the processor.

5.1.4 Data agage

The External Data Language (EDL) is the form in which data values may be

presented on-line to DM-1 to be mapped into the data pool, under the control of the

structure specification in the system directories. An off-line data entry mechanism is

also provided to preprocess data into the Internal Data Language (lDL).

The off-line mech"asm processes punched cards containing item definitions

and data values in an external language. It converts the definitions into a directory and

the data into the s gmented stream of bits used internally by DM-1. These elements

can be merged into the data pool through an IDL Data Entry job.

Data may be entered directly at the consobe or on punched cards or paper tape

in the External Data LAnguage. This is a punctuated string of field values in an alpha-

numeric code. The values are present. to the system In the order of the ocaurrence

of the fields cnd files in the item definition. Te presence of a statement in the item

5-10

definition has no effect on the order of presentation of items or the punctuation of the

data string. The data string contains values for fields and files, with a slash between

each value.

A field value is an alphanumeric string of characters consistent with the defini-

tion for the field. For example, an integer Is presented as a string of decimal digits; an

exponential field is presented as decimal digits with a decimal point and a scale factor,

if requii4i an aiphanumeric field is presented as a string of alphanumeric characters;

etc. The length of the value string must be consistent with the definition. A value for a

variable length field may be arbitrarily long. A value for a fixed lengt field mtty not

exceed the length specified in the field's definition.

A file value consists of a series of record values which, in turn, consist of

a string of field values and embedded file values. A file value is bounded by parentheses

and the data string for each record Is delimited by parentheses.

At any point in a data string, the name of the following item may be inserted.

A name is signalled by an asterisk. The name forces the EDL processor to position

itself to the specified item. There are three reasons for inserting the name of an iUem

in the data string. First, it supplies redundancy so that the entire string is not lost if

the data coder skips a value or gives too many values in a part of the string. Second,

the name permits the coder to skip a series of items for which he has no values. All

items between the one corresponding to the last value and the named item are set to

null by the EDL processor. Third, it "s used to mnnounce a value for an optional item.

Any optional item is presumed missing unless its name appears ahead of the value for

the item.

The EDL data string contains a value for a statement, file, or field that is

consistent with the syntax shown In the chart in Figure 5-4. A statement ,value is a string

:J field values and file values for the subitems of the statement, with no delimiters sur-

rounding the statement. A file value begins with a double left parenthesis, ((, one to

open the file and one to open the first record. The boundary between records is marked

by a right parenthois and a le." parenthesis,) (, one to close the previous record and

the other to open the next record. ThU end of the file is marked by a double right paren-

tdesis,)), which closes the last record and the file, respectively. if the data string

contains only a field value, no delimiters are used.

5-11

.•"!i

00

/c

il 0.11

5-3.2

An item image for file A of Figure 5-2 is repeated below with a possible data

string as an example. The steps taken by the Input Scan Routine in !nterpreting the data

string with the syntactic chart of Figur . 5-4 are then ý -esented. The notation Va is used

to represent a value for the field named a.

EXAMPLE -

Item Imagc:

A, F((B, S(a, A, V/C, F((b, I, 3/c,I, V)))/d, E, 4/e, E,V))

File C

Statement B

File A

Data String:

Record 1 ((Va/((Vb/Vc) (Vb/Vc) (Vb/Vc))/Vd/Ve)

Record 2 (Va/((Vb/Vc) (Vb/Vc))/*d, Vd/Ve)
File A Record 3 (*C, ((Vb/Vc) (Vb/Vc) (Vb,'Vc) (Vb/Vc)))

Record 4 (Vq/*e, Ve))

(1) 1j. The syntactic chart in Figure 5-4 is supplied to
the INSCAN Routine (level 0) by the EDL processor.
A data string may begin with an asterisk, a double left
parenthesis, or a lieAA value. The double left paren-
thesis is encountered in this exa :)le, and INSCAN
executes the processor's routine which prepares for a
file. This is an example of an action in the midst of a
syntactic chart (or action-graph). The STRING chart
is called on level 1 to interpret the string for the first
record of file A.

(2) V__t. The first thing encountered with the STRING
chart on level 1 is a value for the field A. A processor
action is executed to extract the value. Since the value
is followed by a slash, the scan transfers to the start
of the chart, which is still on level 1.

(3) (An embedded file (file . is entered in the first
record of file A. The STRING chart is called on level 2
to scan the strTng for the first record of file C.

(4) VbLVc. The value for field b is scanned and extracted.
Since a ssaL Aollows, there is another item in the string
and the scan transfere to the start of the chart, which is
still on level 2. The value for field c is extracted. Since

5-13

the next character is D)t a slash, there are no more
items in the string on level 2 (the first record of file
The STRING chart exits to level 1, and control is pick~ed
up at the point after the call to the STRING chart. An
action is performed in the processor to ensure that all
subitems of the record have been received. If any are
missing, the processor fills out the record with null
values.

(5)) (. The right parenthesis marks the end of the first
record of the embedded file c within the first record of
file A. Following a record end, a choice exists. The
next character might signal the beginning of another record
or the end of file. In this case, the left parenthe~is Fig-
nals the beginning of another record. The STRING chart
is called on level 2 to scan the second record of file ;..

(6) Vb/Vc) (Vb/Vc. The second and third records of file C
are scanned like the first record.

(7) D. The double right parenthesis marks the end of the
embedded file C L) the first record of file A. The proc-
essor performs-the actions required to clcie the file
and transfers to point D on the chart to check for a slash.

(8) 4VO/Ve. These field values are scanned on level 1 and
extracted.

(9)) (. The right parenthesis marks the end of the first
Fecord of file A and the left parenthesis signals the be-
ginning of anoffer record. These are detected on level 0
and the STRING chart is called on level 1 to scan the
string for the second record ol file A.

(10) V /Vc) (Vb/Vc))/. The values for the field a and the
file C are scanned and acted upon as before. The-slash
signls that another iterii exists on level 1.

el(11) ddVe). The asterisk is detected by the first choice at
Hpoint A on 'he STRING chart. It sibnffies that an Item name
follows. The processor steps to the named item. In this
case, it is already at the named item, so the name serves
only as a check. The value for fields d and e are scanned
and extracted. The chart exits to level 0 whien no slash is
found after the value for field e. The right p&renthesis is
detected by the chart on level •, marking the end of the
second record of file A.

. i i .- 1.

(12) (*C (Va/Vb)(Va/Vb)(Va/Vb)(Va/Vbf)!. The left parenthesis
marks the beginning ef the third record of file A. The level
0 chart calls the S 1RING chart on level I to scan the record
value. The name C is the first element in the data string.
In positioning to the item C in the definition, the processor
inberts a null value for thefield A, since that item is skipped
in the data string. The value of Mie C is scanned and extrac-
ted as before. The first two right paientheses in the triple
mark the end of the embedded file C. Since no slash follows,
the chart exits to level 0 again. Values for fields d and e
were skipped in this third record of file A. This is shown
by the third parenthesis following the close of file C. The
piocessor action fills out the record with null values.

(13) (Va/*e,Vc). The fo':rth renord of file A dioes not contain
iva-v'O for file C. In positioning fo the-named item e,
the processor action will mark the file null (no records).

(14) 1. The final right parenthesis marks the end of file A.
The chart exits on level 0. Control is returned to the EDL
processor, where a check is made to ensure that the entire
Item was filled out with values.

5. 1.5 The Job Request Langu

A user control the work performed by DM-1 by sob-run requests in the Job

Requebt Language. He may request the execution of any system or user j3b in the

library by typing a rŽquest at the console. The Job Request ianguage provides a broad

spectrum of ilexibility by permitting simple requests consisting of a job name, or com-

plex requests cnatainlag binding specifications for many job paranmters with qualifica-

rAdons directing conditional selection and restructuring of data items, to be used as Job

: -8.

A job-run request is patterned after the job-description image. This ctrisists

of the job name followed oy a list of the names of the jjb's 'rinal input parameters and

formal output parametert. For example. the job-description image of a job which de-

termines the equaLian of a line from a set of coordinate points might be:

REGRESSION points; line

vbere the Job's name is REGRESSION, its input paranieter is a file called points and

Its output parameter is a statement called lin. which give the coefficients of the line.

Wein a user wisbs to execute the job, he binds the invt ý".4"t [rameter in a

job-rum request. He replaces the formal name oInnt. !n the job-descriptbon image with

•: 5-15

the name of a data-pool file containing the coordinate points or with a literal file typed

at the console. He also binds the output parameters by replacing the formal name line

with the name of a statement in the data pool or with a name to be assigned to a work-

area item to be created by the system to accept the job's output. For example, a job-run

request might be:

REGRESSION test data; * failuxe line.

wherp test data iE the name of a file and failure line is a name the user wishes to assign

to the job's output, which is to be written into the work area of the data pool.

Figure 5-5 is the syntactic chart for the Job Request Language. The chart

for a job-run request is given in Figure 5-5 (a). It specifies that a job-run request

begins w;ith a request header, which identifies the user and is in a common format for

all requests. The rest of the request is the bowid job-description image. It consists

of the job name followed by a choice of four components. A semicolon occurs if there

are no input parameters to be bound, or after the last input-parameter binding specifi-

cation. It announces the beginning of a set of output-parameter binding qpecifications.

A period occurs after the job name and terminates the request if there are no parameters

to be bound. If there are parameters, the period follows the last parameter binding

specification. A comma normally separates binding specifications. The appearance of

a comma immediately after the job name implies that the)ob has several input param-

eters and that the first parameter will not be specified. In other words, if the comma

is used, but is not preceded by a parameter specification, the form alparameter in the

corresponding position in the job-description image is not to be bound for this run. If

none of these punctuation characters follows the job name, an input -parameter specification

was given. Following the parameter specification or a null inpun parameter, the chart of

F gure 5-5 transfers to point A to repeat the scan for the next element of the request.

After the last input-pi;,ra.,neter specification, P semicolon signifies the beginning of the

output perameters, or a period specifles that no output parameters are to be bound.

If the semicolon is encountered, the scan passes to point B in the syntactic

chart. A period signifies that no more cutput parameters are to be bound. A comma

specifies a null output parameter. Other',,se, an output-parameter specification occurs

at this point in the request. After the output parameter on a null specification, the chart.

transfers to point B to repeat the scan for the aext parameter. After the last parameter

srecifi -ation, a period marks the end of the request.

,5-16

Job Run Rq~t ~

(R)equRestqes

KlOuputt
Paraete Literal ,te

Parampu Par am

I7 Nul ~~pt) AOtu

ParmeerPAPa~mw- amewIKinputnLLamte

Data~ 5-. ~-fw S~ele~t.yuction Ca

P O IDI p e c i f c a t i o

Figure 5-5 (b) Is the syntactic chart for an input-parameter binding specifica-
tion. It is referenced hy the chart for a job-run request. I. quotation mark signifies
that a literal value for the input parameter is given in the request. The literal is ter-
minated by a closing quotation mark. If the specification is followed by a comnia, the
character is scauned over before the chart exits. If the. Input parameter specification
is not a literal, it Muist be the name of a data-pooJ item. This may be followed by ai
selection specification enclosed in parentheses. A selection specification may contain
a condition which identifies a subset of the named item as the data to be fed to the job.
It may also contain a reformat specification which erpecifies that the data ishould ue fed

to the program under a structure definition that is different from Its current definition.i
Again, the comma is scanned over if it appears after the input-parameter specification.

The syntactic chart for an output parameter is given in Figure 5-5 (c). An
output parameter is either a data-pool name or an asterisk followed by a user-supplied
name. The latter is a request to tie system to define an item in the work area to re-
ceive the output parameter and assign the given name to it. 'the item can be used later
as input to another job for further processing or disptay.

5.2 JOB-PARAMETER BINDING

Another of the operational features of DM-1 is its control over the binding of
data items to programs. In a job-run request, a uscr rncý specify the data to be oper-
ated on by its symbolic name and the system associates the data with the program's input
and output requests. The system also coordinates the communication of data fro-i one
program to another within the framework of the job.

5.2.1 Progarams and Jobs

A job in the DM-l library may be viewed as a black bo,ý with certain inputsj
and certain outputs. Each input and output is a data item with a certain structure. These

be assigned by the programmer when he writes a program and used by him to reference

the parameter in call.. to the system. Or, parameter names may be assigned by a User
when he creates a Job from existing components.

When a program ris written for DM -1, the programmer assigns formual names to
eachi of him input and output data items. These formal parameters may have a fixed

• --- " i . _ ,• '* • • •

strucmre, in a the sense of a speo.fied item definition, or they may have a variablt

struciure. If the structure is fixed, the program is written assuming that the fixed

structure exists in the data pool and all calls to the system associated with that dai

item relate implicitly to the fixed structure. If the structure of a parameter Is variable,

the program is written to operate with a system-supplied Item List Table for input param-

eters to dete. mine the structure with which it is operating; or, the program must supply

such a table to the system to specify the structure of output parameters.

After a program is written, it Is entered into the DM-1 library by the execu-

tion of the Program Entry job. Each of its formal parameters is described to the system

by an item definition. The system places the program's name and its parameter speci-

fications into the library. This step makes the program a Job. Its job-description image

It- the program's name (job name) with the list of formal inpuZ and output paramet#"rs.

Once the job is in the library it may be used, like any other job, as a component in more

complex jobs, as a subroutine called through a job extension from a program, or as a

unit of w,-rk callable by a user with a job-run request. Effectively, it becomes a black

box with specified formal inputs and formal outputs which car. 1e bound to data-pool

items, to the inputs and outputs of other jobs, or to data supplied by a program in a job

extension.

Figure 5-6 (a) shows two jobs as black boxes. Each has two inputs and two

outputs. As black boxes, they are very similar. However, JOB 10 is a single-task

job; I.e., It is a program which was entered into the system through the TProgram Entry

job. JOB20 is a multitask job; i.e., It was described to the system with the Job De- I
scription job as consisting of a sequence cf jobs which already existed in the library.

Figure 5-6 (b) shows JOB20 as a sequence of three other jobs; JOBS, JOB1, and JOB15.

Ile inputs to JOB20 are actudly inputs to its components, and the otitputs are actuAly
omponeidt ouqpus.)7U Inputs and outputs of the individual components are re.taed in
a fixed way by the job description which created JOI02. Once the job is created, it is

eligible to be called and executed by a user at a emonsoe o, by a program through a job
exteb'on. It Is also eligible to be a compoewnt in another job. (In the sense that a Job

may be Jefined in termtn -f jobs, the defmnlion of a job Is recursive.) In any of these

uses, tL* user may Ignore the internal structure of the job description. Only the formal

input a&d opt parameters of the job neod be considered. The system takes care of

5-19

4,L

A 1 Job 10 Job 20

BD F H.1

(a) Two Jobs as Black Boxes

Job 20

E IJob 5 J]

LA C-

iJob 10

Job 15 J -

L

(b) Components of Job 20

Figure 5-6. Jobs as Black Boxts

6-20

i---.

-__

4im

relating the data items bound to the formal parameters of the job, through an arbitrary
number of levels of indirect references, to the terminal program which actually processes

the data.

5.2.2 Binding Specification

In describing a job as a sequence of existing jobs, the user may assign formal
names to job-input and job-output parameters to be bound when a run request is issued
for thep job. He uses these formal job-input names, data-pool names, and formal corn-
ponent-output names to define the formal inputs of the component jobs. Similarly, he
defines the formal outputs of the component jobs by assigning them to data-pool names,
formal inputs of other components, or formal outputs of the job.

When a sequence of independent jobs is defined as a new job, the output of one
component of the sequence may be semantically compatible with the input of another

- -vownponent but the formiA requirements may differ. To equate such parameters, the
binding specification contains a reformat clause. The reformat clause specifies a struc-

tua rnfraint aepace In interpreting the. source item as an input to the
second component. When the input requires a subset of the source item, the binding
specification contains a condition clause. The condition is used to select a subset of
the source item which is to be used as the input item. For example, one component of
a job may produce a file containing a record for each employee. Another component

processes similar records for employees in the stock-option plan. A condition may be
used In binding the employee file to the second component, so that only the records for
employees who meet the requirements of the stock-option plan will be fed to the second
component. The reformat clause and the condition clause may be combined in a binding
specification to produce a subset and a structure transformation.

The same requirements for parameter binding occur in job-run requests. Itema
in the data pool may be bound to formal job inputs with a bindin~g specification that con-
tal'no -A reformat clause and a condition clause.

5.3 RELATIONSHIP TO THE OPERATING SYSTEM

DM-1 is designed to function in a multiprogrammned environment in conjunction
with an operating system which controls the environment. Wherever possible, the sys-
tem uses the features of the operating system to enhance its performance. However,

5-21

I
there are operational features of DM-1 which replace similar features of the operating

system, so that the full range of flexibility and power of DM-1 may be exercised. The

characteristics of the job-run request, the features for the binding of parameters, and

the mechqnisms for accessing and storing data symbolically under directory control are

not accounted for in the features of a general-purpose operating systerz. The following

summary indicates the features that must be provided by parts of u.e DM-1 system

itself:

(1) To provide the ability to respond to job-run requests,
the DM-1 Request Processor is required. A user must
be able to call for the execution of jobs from the DM-1
library, using the data binding features of the system.
Since the maintenance of the structural requirements for
the parameters of programs and jobs is a DM-1 feature,
the library is not under the coatrol of the general opera-
ting system.

(2) To provide the flexibility of DM-1 during the execution
of the job, the Job Manager is required. It must operate
with the output of the Request Processor and monitor the
loading and - xecuAion of each of the programs in the job.
It must respond to program calls to execute other jobs in
the library as subroutines (job extensions).

(3) To provide data access and storage services to programs
during their operation, the Service Package is required.
It uses the directories and the data binding information
produced by the Request Processor and acts as an inter-
mediary between programs and the data pools.

Several approaches could be taken to accommodate the DM-1 requirements

within the operating system. The two extrerme posit6its help to define the choices open

to the system. At one extreme, the DM-1 system could be organized to function as a job

in an existing operating system. It would appear no different from any other job executed
'rnder the operating system's control. At the other extreme, the scope of DM-1 could be

expanded to incorporate all the features of the operating nystem, namely an integrated

system to control such elements as multiprog,,anmed scheduling, device control, and

resource allocation, as well as management of the data pool and job library. 1'rogram-

nitng language processors could be modified to incorporate language elements of the DM-1

system.

5-22

If the DM-I system is to function as a job under the operating system, all

system facilities must be provided for within the 1'b. The response to a job-run request

could be handled by the first stage of the job, and the appropriate coding to execute the

request could be loaded as overlays or subroutines. However, space would be required

in the memory sasigned to the job for the system service routines as well as the code of

the task programs. These routines would be duplicated in every DM-1 'ob. This would

severely limit the number of DM-1 jobs which could function together in the time-shared

mode.

If an operating system is developed to include the DM-1 system, the coordi-

nation between the systems would enhance performance. The programming language

processors would contain facilities for calling DM-1 services and operating on structured

items. The scheduling algorithms could tace advantage of the degree of control exer-

cised by DM-1 over the data. Efficiencies could be introduced by combining levels of

storage control. However, an operating system and its associated language processors

represent a large investment in design and development. Its valuable features cannot

be discarded lightly.

DM-1 takes a compromise position that is based on an evaluation of the planned

implementatiun under the RADC Mobile Wing ECP-1 for the M-1218 computer. The de-

tails of the planned relationship between DM-1 and the operating system are given in an

appendix in Volume IL DM-1 relates to the operating system in su-h a way that it appeare

as an embedded part of the system to a program, while it appears as a job to the opera-

ting system. A request for a DM-1 job is issued at a console as data from the viewpoint

of the opevating system. T1Lib data is for the DM-I system which is recognp-,ed by the

operating system as a single job. The DM-1 Request Processor decodes the request and

the DM-1 Job Manager supnrvises its execution within the confines of a single operating

system job.

The DI& -1 job has a special status within the operating system. Wbetever It

Is requested, the ope.ating system enstres that the DM-l Service Package is resident

in i"omory before initiaft'tg the DM-1 system as a job. Since the Servic', Package is
reentrant, only we resident copy is needed to serve Liany DM-1 programs Ultiated under

separate requests. This artifice permits ths system to t adva of the multi-

progammed environment, without dup*icating tb- DM-1 servloe routines in every program.

5-23

j- - :•

The operating system permits programs to call for DM-1 service routines through its

normal executive call with a code Eignifying the Service Package. It passes control to

the resident Service Package which decodes the request and responds to it.

The interface between the operating system and DM-1 is a narrow one, which

permits easy transfer of the DM-1 system to another enviXronment with a different opera-

ting system. Improvements or changes in either DM-1 nr the operating system shouid

have little effect on the other system.

5.4 REQUEST PROCESSOR

The DM-1 Request Processor is initiated by the Job Manager for each user

request for -.. DM-1 system. It reads the console message which contains a job-run

request in the Job Request Language. The job-run request contains the name of a job

in the DM-1 Obrary and the binding specifications for the job's input and output param-

eters. The Request Processor uses the Input Scan Routine with the action-graph for a
job-run r• nuest to decode the message. It uses the job name to locate the job's descrip-

tion in the "ary. With the description as a guide, the request processor constructs a

request record containing the information needed to execute the sequence of programs

(tasks) that make up the job. This record is written into the request file to be used by

the Job Manager and Service Package during the execution of the job.

The request record contains the Task List which identifies the sequence of

programs to be executed for the job. -he Task List is derived from Jte job description

and the job-run request. It contains identifiers for the -ompopent programs of the job

ad for any implied tasks needed to achieve the conditional reformatting of parameters

iopecified In the job-run request.

The Task List is a file embedded in the request record. Each record of the

Task List contains two parameter binding files, one for the task's Input parameters and

one for its output parameters. The records of the parameter binding files are equations

relating tbe formal parimeter names used by the program in service calls to the data-

pool identifiers of the actual data bound to the program for the run.

6.4.1 Requs rnlto

Figure 5-7 is a schematic diagram of the steps taken by the Request Processor

in translating the job-run request into the internal request record. The user begins the

5-24

__L_ ___ ___

UUserI
ConsoleI

Job Run
Request

F Rquest Processor

ActRun Request

Specofdcted

F~gure 5-7. ~ qs*. TraO'ateo

RunRe5

process by developing a job-run request at the console ard signaling the operating system

that a DM-1 job is to be execuited. The operating system schedules the Job Manager,

assigns wemory to it, and loads it. A standard set of tasks for the Request Processor

is exec'tted by the Job Manager. The Reque, 1"rcessor reads the job-run request

through an operating system service. I retrt; vs the action-graph for the Job Request

Language and uses the Input Scan Routine to scan the request, check its syntax, and de-

code it into an internal form. The decoded run request and the job description from the

library are used in binding each of the job's input, output, and intermediate data param-

eters. Each parameter is aasiýned an IPC in the structure. Any imp'ied tasks needed

to reformat items or selps. dita subsets conditionally are scheduled for inclusion in the

Task List. These implied task requirements and the IPC's assigned to the job's par-

ameters are stored in the parameter binding specification. This is an input to the last

step of che process, the generation of the Task List for the requested job. The Task

List, which contains one record for each task, is written into a record of the request

file. A binding record for each of the task's input and output parameters is written into

the input or output binding file, which is embedded in the Task List record for the task.

The binding recor2. equate the formal parameter name to the IPC of the data item bound

to it.

The information derived by the Request Processor about the job is written as

a record of the request file to segre -ae one request from aiother. In a multiprogr'mmed

environment, many independent requests may be active at once. Each active request is

assigned a different record number in the request file. This number is used internally

to identify the request for its duration.

5.4.2 Job Extension

A job extension is a request by an opera"ting program for the exer.=ion of a job

from the library. TIe program may execute the job as a subroutine, with control being

returned to the calling program at the completion of the extended job, or it may request

the job extension at its tert-i•aation.

The same parameter binding powers may be exercised by a program in a job-

extensiot request as by a user in a job-run request issued at a cornole, The calling

program binds data-pool iteme to the job's input azd output parameters by using any

5-26

convenient Item Identifiers: data-pool names, formal parameters names, temporary

item names, or IPC's. The job-extansion request may specify structural changes in

the items and conditional selections.

The Request Processor responds to job-extension requests just as it responds

to job-run reqwesta that are initiated at the console. After the initial response by a

resident portion of the Job Manager, a scan of the job-extension request is performed

by a rou•tne of the Request Proceseor to produce a decoded run request that is identical

to that produced for requests issued from the console. The parameter binding and Task

List generation steps of the Request Processor operate on the decoXd run request and

produce a request record containing the Task List for the extension jou. This job is

then executed normally. When it is finished, the program that called it receives

control at the point after the call, unless the job extension was calla at the program's

termination.

5.4.3 The Request Record

For each job-run reqpiest and job-extension request, the Request Processor

develops a request ,ecord containing the information needed by the system during the

job'16 execution. The key components of a request record are shown in Table 5-1.

TABLE 5-1. STRUCTURE OF THE REQUEST FILE

RLQUEST FILE, F
PARENT TASK, H,V
DUMP DATA,*I,S

DLUMP]D,0,4
RETURN ADDRESS, I, 12

TASK LIST, F
TYP. EB, 3
TYPE ID, O, 4
FLOATS, I, 3
INPUTS, F

FORMAL NAME, A, V
TI"PEI B,3
IPC,HV

OUTPUTS, F
FORMAL NAME,A, V
TYPE, B, 3
IPcH,v

5-27

The request record for an extensior. job contains the identification of the task

which called it in the field -'kRENT TASK. The vaiue of thin field is two record numbers,

the number of the request record for the jel and the number of the Task List record for

the task which issued the job extenzon. The DUMP DATA statement specifies the loca-

tion in auxiliary storage and the return address of the shelved task if it was rolled-out

to accommodate the job extension. For console-initiated requests, the request record

contains a null DUMP DATA statement.

The Task List conLains one record for each task in the requested job. The

fields in the Task List record identify the object code for a program and specify its loca-

tion in auxiliary storage. They are used by the Job Manager to load and Initiate the task.

The files for Inputs and outputs contain equations relating the formal names of the pro-

gram's parameters to the IPC's of the data-pool items bound to those parameters. They

are used by the Service Package routines to interpret input-output requests issued by the

program.

5.5 JOB MANAGER

The Job Manager is a set of system operations which coordinate the flow of

-ontrol among programs. It consists of four elcments which mannge the transition of

control aAong tasks, the operating system, and the Request Processor. The set of

transitions accomplished through elements of the Job Manager is shown in Figure 5-8.

(1) When the user requests a DM-1 job, the operating
system loads the Request Bootstrap of the Job Manager.
This element accomplishes the first transition - be-
tween the operating system and the Request Processor.
The Request Bootstrap program assigns a request record
number for the request, prepares iome parts of the
record, and initiates the Request Processor.

(2) After the Request Processor digests the request and

builds the request record, it calls the Task Terminate
routine of the Job Manager. This element accomplishes
the second transition - between the Request Processor
and the fhr't task of the requested job. It reads the first
record of the Task List, determines the location of the
object code, and loads the task and executes it.

(3) Each time a task of the job oompletes its operation, it
calls the Task Terminate rout'ne. In this case, the
Task Terminate routine acoomplishes the third transi-
tion - between a task and the next task in tht job. it
reads the next record of Ote Task List to locate and
load thb next tak.

6-28 I_. ---

TRNSTIN RO THROUGH JOB TO
TRANiTIO FRO MANAGER ELEMENTS T

O!-ratngRequest L ~ Request

system Bootstrap ''P roestsor'

Request Task First Task
(~~) Processor 1 ~t

03Any Task Task N'tT~i()Of Job, Termina~o'

Any Task Job

Of Job Extension

Request Reus
BootstrapPrcso

ýLa~st T~ask Task

Of JX Job Terinmhate

Re... j st Task Of
Termirste Calling Job>

?t wr Of 6 TrCIl m C utol d b h Job Toriaprt

(4) Any task in a job may execute a job in the DM-l library
as a subroutine or at its termination. The task calls
the Job Extension routine of the Job Manager. This
element housekeeps for a job extension, rolls out the
requesting task, if necessary, and passes contrel to
the Request Bootstrap, which prepares a request record.
It assigns a request record numnhe, records the identity
of the calling task in the request record for the extension
job, and initiates the Request Processor. The Job Fx-
tension Routine and the Request Bootstrap function to-
gether to accomplish the fourth transition - between any
task which ioenezc a job extension and the Request Proc-
essor which prepares the extension job for execution.
Tr'ansition from the Request Processor to the first task
of the ext*.ision job and the task-to-task transitions
within the extension job are accomplished by the Task
Terminate routine as shown for the second and third
transitions in Figure 5-8.

(5) When the last task of an extension job terminates, the
Job Mamtger returns control to the appropriate task
of the job which requested the job extension. The Task
Terminate routine functions as always, by reading the
next record of the Task List and executing the task
identified by that record. The last record of every Task
List produced by the Request Processor calls for the
execution of the Request Terminate task of the Job Man-
ager. This element accomplishes the fifth transition of
Figure 5-8 - between a completed job extension and the
appropriate task of the job which requested the job ex-
tension. The Request Terminate task reads the request
record fc-- the terminating job and d letes the request
record and-tny scratch data developed by the job. If the
task which requested the job extension was rolled out, its
location is given in the DUMP DATA statement in the re-
quest record. The Request Terminate task rolls the shelved
task back into memory and returns control to the return
address of the tak;k. Otherwise, it calls the Task Termin-
ate routine with parameters set to return control to the task
following the task which issued the job extension.

(6) When the last task of a console-initiated job terminates, the
Job Manager returns control to the operating system. The
Task Terminate routine loada and executes the Request
Terminate task. This element acoomplishes the sixth trans-
ition - between the last tahk of a console-initiated job and
the operating system. The Request Terminate tank deletes
the request record anid any scratch data developed by the jeb.
Sivce there is no reference in the request record to a parent
tas6L, control is returned to the operating savtem.

"5-30

Sfk
| I1I

5.6 SIZE PACAGE

One other operational feature of DM-1 is the set of routines which performII
Input-output services for programs running as parts of jobs from the DV5 1 LVrary.
These and a resident !nlerpreter constitute the Service Package. The Ser.'ice Package
Interpreter occupies a reserved area of memory with some group of service routines
whenever any DM-1 job Is in progress. The same copy of the Service Pack.7 serves
any number of Divi-I jobs in the time-shared environment.

The operating system ensures that the Service Packncre ib in inemo,. whhen a
DM-1 job is requested. Any DM-1 system element or task prc;ram can call on the
service routines to retrieve or store data in the data pool. A call to a Service Package
routine is issued through the operating system. The program identifies the desired
"routine by a code selected from a block of code3 assigned to DM-1 by the overating sys-
tem. When the operating system is entered with any code from the CM-i block, it
passes control to the Service Package Interpreter, which determines the routine re-
quested. If the routine Is currently in memory, the Interpreter passes control to It.
Otherwise, the requested routine is loaded from auxiliary storage, replacing an inactive
routine of the Service Package.

To provide service L, many p-- cgra,- q with one copy of i-he Service Package,
the services are performed by reentrant routines. A given routine can begin serving
other programs while it is still working an earlier requests. For example, 9 a routine
Is interrupted while working for program A, the operating -ystem's switching algorithm
may give control to program B. Program B may call for the same scrviae routine and
the same copy of the routine will be executed. If another interrupt occurs, the routine
may be restarted in its work for prvgram A. Conflicts are avoided in serving several
programs by keeping all prarweters of the service routines in the memory of the pro-iaiis requestinM service. t1e sorvice routines never modify their own area of memory.
All modification are made In the memory of the caller through index registers, which
are saved and restored by the operating system with each interruption of the Service
Packapm.

STh inAt-output service. performed by the Service Pa-kage routines tran-
mit data between a program's buffer and the segmented data string of the data pool. The
prgprW ms need not be concerned with the field structure of the data in the data stream.

5-31

They specify the format they want in their buffer and! the service routines put the daft
into that format. The program mist be aware of the hierarchical relationships among
the items it reads and writes. However, discrepancies between the program's assump-

tions and the actual mtruotute In the data pool can be acomdtdby reformat specifi-
cation In binding data-pool items to th prograxIs para~ineterB.

The programmer's view of the Service Package and a description of the tnpt-
output services provided are given in Section VMI.

~41 -3

SECTION VI. DATA-POOL MANAGEMENT

The transition from magnetic-tape-orlented data processing installations to
random-access mrass-storage systems has already created the need for an administrator
who can arbitrate among users with conflicting interests concerning the best use of on-line
mass storage. Multiprogramming and time sharing have added data security and user
priority to the administrator's scope of responsibility. The control of file names and
program names across separate groups of users Is not new. Operatlng systems have
provided a wide range of services to aid the administrator who desires to maim the moat
effective use of a compuzter center.

t Data Management systems add a whole new dimension to the administrator's

possibilities for greater efficiency. N the traditional separation of users. programmers,
and operation. to maintaind, a data mainagement syftem will just increase overhead costa.
Nf the data pool to merely a collection of fileso and propwam designed by autonomnous
pmoips, tde potential of %@ new system will not be reallsed.

The Data Adminis~ator's role can beat be described by categortzing several
J!time periods In &. life of a project.

6* 4

(1) Data collecting, data structure planning, and program/

job preparation.

(Preparation for running the job on the computer.

(3) Measuring performance and making modifications
to improve efficiency.

This section will describe the administrator's functions through these various

time periods with the emphasis on data. Section VII will cover programs and jobs from

preparation, through library storage, and on to execution.

6.1 DATA INDEPENDENCE

The biggest challenge offered by DM-1 is the opportunity to remove data struc-

turing from the narrow purview of the departmental analyst whose only concern has been

the efficiency of his application. If the data is susceptible to multiple usage, the data

administrator can structure it without affecting departmental applications. Programs

can be designed with optimum data structures assumed, and if the data in the data pool

is arranged differently, the data management system can structur, it automatically when

the user job is run.

A series of Data Pool Maintenance Jobs is available to the Data Administrator

for data structuring and the establishment of the data base.

6.2 DIRECT Y MANIPULATION

The system Jobs concerned with directory manipulation provide the Data Ad-

ministrator with a data-description language for specifying and altering the logical struc-

ture of the data base. The physical handling of the data is separated from the definition of

its logical structure. In fact, data cannot be added until the system directories contain

the data description.

Paragraph 4. 1 describes the various item types (files, statements, etc.) and

how they can be arrangid Into logical structures. When an initial structure has been

decided upon, this defintion in submitted to DM-1 as Input to the Define-Rem Job. As a
result of the execution of this Job, the term names for the new items are inserted into the

Term Encoding Table and Term List, and tbo item p and siow are stored in their

proper logical position in the notm List.

6-2

~~~~~~4 . -', , , . , .'.' "



Two specific system control functions should be considered at this time.

Security restrictions on reading or writing classes of data can be enforced most effi-

ciently if items are properly classified as they are def'ed. For example, if an em-

ployee rating file is never to be read except by the Personnel Manager, the file and its

sub-items should be given a Security Restriction Level (SRL) code high enough to auto-

matically prevent most users from seeing the data.

Problems crused by unintentionally duplicating Item names will not arise if

new item definitions are checked against a current Term Encoding Table list before the

Define-Item job is run.

Indexing of fields should be under the Data Administrator's control. When a

field is indexed, random retrieval is quicker, but mass-storage space is reduced be-

cause additional directories are required to provide the rapid access.

After the initial choices are made, the Index job is executed and the additional

directory tables are constructed. If space becomes a problem, the Remove-Index job

can be used to undo the indexing and release the space. There are options within the

Index job itself which can be used. Indexing all field values (mode ALL) is most expen-

sive. Perhaps only partial indexing through the LIST or RANGE options will provide a

better balance between space and time.

Logical relationships between items in separate structures vre defined through

the Link job. Through linkage, it is possible to define several logical structures without

the need to duplicate physical data. Since. the Data Administrator will see all item defin-

itions, he has the opportunity to consider:

(n haSeparating the structures so that the background or
reference data will be available, when called for,
but will not encumber the high activity data.

( Duplicating the data, with its coat in #pace and main-
tenance versus nadoaplication with Its slower retrievsl.

wThe initial choiocs are not critical because linLm can be removed by the Delete-

"Ank job followed by a Define-item job to add the item to the source structure.

6-3

i-



Structures from which logically related data is r"moved get a source link

defined through the Link job, The source link points to the target structure where the

logically related data is stored. In the target structure a target link is inserted to

idendfy the items which are logically related to the source items. These links are

unidirectional; in proceeding down through a structure, a source link can cause branching

to a new structure, but a target link is ignored.

6.3 DATA MANIPULATION

Affer an initial data structure has been defined to the system, data may be

added to the data base. The Add-Data job will accept a sirll volume of data directly

from the console. Large volumes of external (foreign) data are translated through an

External-to-Internal Convvrsion job before Add-Data is executed.

Since most data is characterized by a rapid rate of change, there ir a series

of maintenance jobs to accomplish data deletion, data replacements, and -selective ex-

plicitly stated modifications. The query capability and the random-access mass storage

suggest that data changes should be input as they are received. The Replace-Data and

Modify-Data jobs are designed for on-line maintenance. For the more traditional batch

processing, the Update-Data job will apply a whole series of transactions to a file in

one job run.

For files containing indexed fields, the Data-Delete job removes records by

setting each of the subitems to a null state. This allows records to retain their original

record numbers and thus the effect on the index tables in te directory is minimized.

After a file has had a large number of such deletions, the Mile-Compress job can be used

to adjust all the record numbers at one time and re-establish a contiguous set.

There is no single syetem job which will rearrange data to fit a change in the

item definitioa. When the Data Admnniator decides to redefine a structure, he first

executes the R ,firmat job. Reformat will restructure the data in accordance with the

specifications given, and temporarily file the data in the working area of the data pool.

Then the otrcture is redefined using the proper directory manipulation jobs. These

jobs automatically delete data-base data when structural changes tre about to be mide.

After he is satisfied with the definition, the Dats Administrator uses the Add-Data job

to return the reaructw'd data to the data bae.

6-4

_ _



If this combination of system jobs becomes a common occurrence, the. com-

bination can be entered as a single job through the use of the Job Description job (see

Section XIJ).

6.4 PREPARATION FOR USERS

All of the directory and data manipulation described in the preceding para-

graphs should be considered as preoaratory. The purpose is to make the data available

for use. Before a user cau run a job to interrogate the data, or read it for the purpose

of performing computations, the user must be ideutified to the data management system.

SThe Add-User job has as its in.put user name, priority, and clearance levels.

A Clearance Level (CL) is a code re-ited to The Security Restriction Level (SRL) which

has been assigned to the data clks (see Paragraph 6.2). If the user's CL code is higher

thau the data's SRL code, the user may have free access to the data. The data adminis-

trator protects large portions of the data pool from unauthorized access or modification

by careful assignment of users' CL codes.

When the relationship between data SRL codes and user CL codes is not pre-

cise enough, there is a second level of protection which can be used. Using the employee

rating file as an example, the data may have been given a SRL code of 5, and the Per-

sonnel Mansger a CL code of 6. Now, the manager of accounting may have Iven given

a CL code of 6 so that he can gain access to certain data which he needs in order to per-

form his job. This CL code of 6 would allow the accounting man to see the employee

rating file if no other protection scheme was available.

The Data Administrator can reduce the Clearance Level for both of these men

to code 5 through the Delete-Uisei job followed by the Add-User job. This makes the

employee rating file and the accounting file unavailable to either manager. Then through

the Add-Aocems-Rights job, the proper data is made available to the proper man by ex-

plicitly stating, in the Acoess Rights table of the directory, which data -ech man may

Th writing or modica ton of data is cotrolled through parallel procedures

to th•oe described for aWoe".

). . •8_



6.5 USAGE STATISTICS

After the data has been defined, added to the data base, and used for a period

of time, the Data Administrator can begin to measure the performance of the system.

DM-1 accumulates data-usage statistics in three separate areas to assist the Data Ad-

ministrator in planning modifications to improve efficiency.

In the Segment Name List, a count is recorded to show how many times each

segment of the data pool has been accessed. When hierarchies af secondary s.orage are

provided, this count will guide the operating system in determining what level of physical

storage should be used. Data base segments with counts above or below average will)

indicate where structural changes should be made to make active data more easily re-

trieved, and to delete inactive data as mass storage becmnes full.

Since the directory segments are also identified in the Segment Name List,

the ratios between directory and data accesses will provide interesting statistics for

use in upgrading the system after usage patterns have been established.

The other two areas where talliep iare maintained are special purpose; they

measure the usage of index and linkage tables. Based on the rates of usage, the Data

Administrator can modify his original decisions on what fields to index and what data
S~to link.

There is a record in the FI'FLDS file for each indexed field. When queries or

conditional searches are executed, tois record is accessed en route to the FYT file.

The tally in this record will indicate whether or not a field deserves to be indexed. tm-

bedded in the same record is the FVT file which lists aUl of the field values by which the

field is currently indexed. For each of these explicit velues, there is a second tally.

These minor tallies will suggest changes in the indexing cption (ALL, LIST, -r RANGE)

which may reduce index table size without reducing access speed.

There is a record in the Linkage Table for each source- and target-link item.

In the records for source links, there is a usage count which will show how otten users,

in reading through source data, have retrieved the target data via the souroe-to-target

Wink. A very large count might suggest duplication of data in the source structure.

6-6



A very small count might lndicate that th data relationship established by the link Is an

artificial me and that the link could be removed without loss.

Initially, the system will produce these usage statistics and depend n the

Data Administrator to analyze them and make an suggested modiflations by executing

the appropriate Data-Pool Maintenance job. Ultimately, the system may be instructed

is perform the anal-lis and modify itself automatically.

The current system deoign %"es not include usage statistics in the User
Aoees/Modiflcation Rights tables or In the Program/Job Library tables. After the

installstlcn grows to include many users and many programs, It might be worthwhile

to add usasp counts to these elements of the directory.

6-7

4_



SECTION VII. PROGRAM PARAMETERS AND THE JOB LIBRARY

Paragraph 5.2 of this report describes parameter binding as an operational

feature of DM-1. siome of the concepts presented will be repeated here, In greater

detail.

7.1 PARAMETER CATEGORIES

A major responsibility of the DM-1 system is to associate the input-output

parameters o( programs with actual data items in the data pool. This ase-ociation is

called parameter binding. It is accomplished, in the DM-1 system, in three distinct

phases associated with three convemions of the system:

(1) How a program accesses and store8 data ,n the data
Pool.

(2) How the individual inuts and output# of programs are
interrelated in a job.

(3) 'low tCe tlqps and outputs of a job are tied to data-pool
items in a job-run request.

7-1

A Z



These conventions present the input-output parameters in different aspects,

according to the context in which a parameter is viewed. The character of the input-

output parameters ,.hanges as they are ,ssoclated with programming, job description,

or job execution.

Figure 7-1 is a branching structure which portrays the categories of input-

output parameters considered in DM-1. The generic term input-output (parameter)

applies to all categories and is shown in the figure as the highest node in the structure.

There are two t)pes of input-output parameters. Generalized parameters are idealized

items that are associated with programs and jobs and for which no data exists.

Specif parameters are real items which correspond to logical positions in

the data pool which can contain the data associated with the parameter.

The binding process ultimately reýxlts in the assignment of specific para-

meters to generalized parameters. The time axis in Figure 7-1 demonstrates this.

At program time, all parameters are generalized; at execution time, all parameters

are spweific; in between, at Job time, some parameters may be genern.2-1ed and some

may be specific. The progression from generalized to specific may take place J,!

several stages:

(1) When a new program is entered into the DM-1 library,
its input-output parameters are defined to the system as
generalized.

(2) 1! the program is used as a cumponent in a job, some of
its input-output parameters may be bound to specific items.
-Oters may remain generalized.

(3) When a job is called for execution, any remaining general-
ized parameters must be made specific by the assignment
of a specific node in the data pool to each.

7.1.1 Generalized Parameters

There are two categories of generalized parameters, formal and individual.

Formal parameters are input-output items associated with a program. Individual

parameters are Input-output items associated •dth a job. When a program is used as

a component in a job, its forma'l parameters are bound o either specific parameters

7-2



INPUT-OUTPUT

I .

I I

i Formal vlIat r -xtbral Interna

I I

-r trProgram-4y

II

Job

Time

Figpn 7-1. Czgegoria d 1i~ut-(atput Parmeasrs

7-3



or individual paranleteri. That is, thc. a, ascig,- - tho~r to actual data items In the

data pool or to job parameters which"I.I b. n ide when the job is executed.

Program pa'-ameters (formal) r" -,'e L~eu n'r dynamic. Fixed parameters

have a fixed structure defined by the pra ammer. u. ie prý;;ian assumes that the

data bound to a fixed parameter Is for- iatted ac!o:ý ýA'Inv to the specified structure.

Dynamic parameters have no specified structure~. t he program is written to operate

withi the DM-1 directory information to determine the structure of dynamic input

parameters or to provide an item definition to the system for dynamic output parameters.

Job parameters (individual) may be direct or indirect. Direct parameters are

intermediate items in the list of component programs that constitute the job. That is,

a direct parameter is an output of a program which is an input to other programs In

the job, but not an output of the job. When the job is executed, the system must make

all direct parameters specific by assigning a logical position in the data pool to them.

This specific node is assigned in the scratch area of the data pool. Indirect para-

meters are parameters which are inputs or outputs of the job itself. A job output is an

output of one of the component programs. Such an output maybe an input to any of the

othaer component programs. A job input is an input of one of the component programs

and may also be an input to others. Indirect parameters are made specific by the

asD gnment of actual data-pool items or literals to input items and actual data-pool

Items or working names for output items. These assignments are made by a user who

issues a job-run request at a console or by programs which issue a job-extension

request.

The types of generalizedi parameters, then. are formal parameters for pro-

gram inets or outputs and individual parameters for job inputs, outputs, and inter-

mediates. Formal parameters are fixed when their structure is assigned by the pro-

grammer, or they are dynamic when the program determines the structure during

execution. 1.1 idual parameters are a direct If they are inputs or outputs of the job,

orthe are direct if they are inputs and outputs at job components, but no.s of the job.

7. 1.2 Bpecific Parameters

specific paramsp er are acually logical nodes in the data-pool structure. The

categories of specific parameters are derived from the agency which assigns them and

the nature of the p~roam.Aer.

7-4



Specific parameters may be internal or external. An internal parameter is an

item in the data pool. An external parameter is a literal to be used as the value for a

generalized parameter when a job is executed. The literal may be bound to a generalized

input parameter of a component program when a job is described, or to a job input when

a job is executed. The system makes the external parameter splcific by assigning a node

in the scratch area to it and by mapping the literal into the item corresponding to that

node.

Internal parameters may be permanent or transitory. A permanent para-

meter is an item in the common data base. A transitory parameter is an item in the

work area or scratch area. Permanent items exist in the data base independently of

any particular job or user. They may be assigned to generalized parameters when a

job is described or when a job is executed.

Transitory parameters are items dedicated to particular jobs or users. An

inter-job parameter is a transitory parameter which exists in the work area of the

data pool. A user may define work-trea items as private files and use them as

specific input-output parameters to bind the generalized parameters of jobs. He may

also assign a job output to the work area by naming the item with a flag to request

that the system make the appropriate item definition. Either way, the inter-job para-

meter persists after the execution of the job which created it and may be bound to the

parameters of other jobs. An i parameter is a transitory parameter which

exists in the scratch area of the data pool. It exists only for the duration of the job

which uses it. Intra-job parameters are always assigned by the system. They are

used whenever a generalized parameter must be made specific, without the specifica-

tion of a data-pool item by a calling agent. All direct parameters are made into intra-

job parameters by the system when a job is executed. This action assigns a scratch-

area node to accept the output of one component of a job so that it may be used as an

input to other components.

kLikewise literals are transformed to intra-job parameters by the system.

They am written into a scratch item in preparing for a job execution so that they can

be read by the appropriate job components (1ing execution. Also, any job outputs

wchic the 0*ll13g agent falls to bind are converted by the system to intra-job paru-

met.r3 so that they wl be written Into the scratch area during the execution of the

. '7-5

*



program which creates them. When the job Is completed, all intra-job parameters

are automatically discarded.

7.1. 3i Parameter-Binding Examples

Examples will be used to illustrate the various ways in which parameters may

be bound.

Consider a program called REGRESSION which fits a line to a set of points.

Each point is defined by an X-value and a Y-value. The input to REGRESSION is a file

called POINTS which contains a record for each point. The output is a statement

called LINE which contains two fields, M and B, defining a line. This is illustrated

in Figure 7-2.

POINTS, F LINE, S
X, 1, 18 REGRESSION M, I, 1
Y, 1, 18 B,1, 18

Figure 7-2. Example of Parameter Binding

During the design of REGRESSION, a programmer designed the generalized

input parameter POINITS and the generalized output parameter LINE to meet the require-

ments of the process. These are formal parameters because they are parameters of

a program. They are fixed because the structure of each is predefined by the program-
mer. Thus, the parameters POINTS and LINE are generalized, formal, ficed

parameters.

During the Implementation of REGRESSION, the programmer assigns the

structures he has designed. He reads his irnput file by referring to the name POINTS

and writes his output stateeinezt by referring to the name LINE. He knows that when

the program Is actually running It will operate on some file of points which was

assigned to his formal parameter POINTS by a user. It in not significant to him that

the specific parameter has some other name. He is indlifferent to the other character-

istics of the file: whether it is a data-base item, a work-area item or a scratch-area

item; whether It was produced by some previous job, by a program which preceded

7-6



REGRESSION in the same job, or by a maintenance operation which converted it from

some external medium; whether the specific item has the X before the Y or the Y before

the X; etc. The programmer knows that the DM-1 system will arrange things so that
when he reads a record of the file which he has called POINTS, his buffer will be

set to the next X-value (18-bit integer) followed by the next Y-value (18-bit integer),
regardless of the characteristics of the specific item being processed by the program,

If these results cannot be achieved, the system will not permit the program to operate.

After REGRESSION is compiled, the programmer, or some other user,

enters the program into the DM-1 library. This gives the system knowledge of the
formal parameters POINTS and LINE. Entry into the library automatically makes

the program into a one-task job. This conv-rts the parameters into individual para-
meters; i.e., the input POINTS and the output LiNE of the job REGRESSION are •

individual parameters because they are job items. They are indirect parameters,

because they are job input-output parameters which may be bound to specific para-

meters when a request to execute the job is issued.

The indirect parameter (input) POINTS may be made specific by assigning

one of the following specific parameters to it:

(1) An external parameter. A literal vzlue may be given for
the file as part of a job-run request. The system assigns
a node in the scratch area and maps the literal into the
item to prepare for the execution of REGRESSION. The
scratch-area item is then an intra-job parameter which
will be discarded after the job is executed.

(2) An internal, permanent parameter. The name of an
item in the data base may be used to make POINTS
specific. If the file is embedded in higher level files,
a condition may be used in the binding specification
to define the precise file to be used. If the format
of the selected item does not conform to the structure
of POINTS, a reformat clause may be used to direct
the system to select the appropriate fields for the X
and Y and to use them as 18-bit integers as directed
by the item definition for POINTS.

(3) An internal, transitory, inter-job parameter. This
binding specification is made exactly like the preceding
one. The only difference is that the item is selected
from the work area instead of the data base.

7-7



When the program operates on its formal input POINTS, it is completely

indifferent to the mechanism that made it specific.

The indirect parameter (output) LINE may be made specific by assigning

one of the following specific parameters to it-

(1) An internal, permanent parameter. An output
item may be bound to a data base item under the
same rules as those for an input item. However,
no output parameter may be bound to a permanent
item if it would cause changes in the values of an
indexed field.

(2) An internal, transitory, inter-job parameter. rhis
kind of assignment may be made in two ways. If
the work-area item to be used as the specific output
"item already exists, the binding is the same as that
for a permanent parameter. If the item does not
exist, the user may assign a name and instruct the
system to create a work-area item to accept the
output. For example, the user might assign the
name MYLINE to the indirect parameter LINE.
After the job is finished, a work-area item called
MYLINE will exist with the values for the M and B
created by REGRESSION during the run. The item
MYLINE may be displayed to the user or used as
an input to some other job. It will remain in the
work area until the user deletes it.

The job REGRESSION may be used as a component in some other job.

Suppose that a job called FMILURE ANALYSIS is constructed from the jobs SELECT,

REGRESSION and PLOT. The situation is depicted in Figure 7-3.

CRITERIA SELECT RESULT

.. .. .REGRES...... LN E

EQUATION V PLOT , ---- -VECTORS

Figure 7-3. Job Construction Procedure

_ 7-8

I - - *.•-~ ,s.--~



The job FAILURE ANALYSIS includes the job REGRESSION as a component.

If the parameters of REGRESSILN are neither inputs nor outputs of the new job, they

become direct parameters In thfi context. That is, they are intermediate Items in the

job FAILURE ANALYSIS, which might be viewed as a job with one Input and one output

as shown in Figure 7-4.

CHOICES FAILURE FAILURE LINE
(CRITERIA) ANALYSIS (V E CTORS)

Figure 7-4. Intermediate Form of the Job FAILURE ANALYSIS

The job has the indirect input parameter called CHOICES which Is Woind to

the indirect parameter CRITERIA of the component SELECT. It has the indirect output

parameter FAILURE LINE which is bound to the indirect output parameter VECTORS

of the component PLOT. It also has two direct parameters: one resuzlts from binding

the parameter RESULT of SELECT to the parameter POINTS of REGRESSION, and

the other results from binding the parameter LINE of REGRESSION to the parameter

EQUATION of PLOT. Whenever FAILURE ANALYSIS is executed, the system will

assign an intra-job parameter in the scratch area to these direct parameters of the job.

The indirect parameters will be bound to specific items by .ae same mechanisms as

were u ted for the job REGRESSION.

7.2 PROGRAM ENTRY

A program comes under the control of the DM-1 system when it Is entered

into the library through the Program Entry Job. Programs are compiled Independently

of the system and their object code is stored under the control of the operating system.

They _- entered into the DM-1 system through a program specification which includes

the folllnd g elements:

(ii Program Name

(A ) Program Io nth c

(5) Program Outputs (formal)

* (4) Program Executive Control Description

7-9



The formal input-output parameters are described by naming them and

giving an item definition for the fixed parameters. Once the Program Entry job has

processed the program specification, the program becomes a job in the DM-l library.

It may be called for execution by a job-run request issued by a user at a console or by

a job-extension request issued by a running program. It may also be used as a com-

ponent in a job description.

7.3 JOB D~ESCRIPTION

A job description defines a new job as a sequence of existing jobs. The corn-

ponents in the sequence are jobs from the DM-1 library. They are in the library

because they were defined by a previous job description which was processed by the

Job Description job or they were entered t by a program specification which was pro-

cessed by the Program Entry job.

To describe a Joob, the user names the job and its input-output parameters,

identifies each component job, and binds the indirect Input-output parameters of each

component job. The job description includes the following elements:

(1) Job Name

(2) Job Inputs (indirect)

(3) Job Outputs (inOirect)

(4) Job Components List

I he job name is the name through which the new job will be called for execution. The

job Inputs and oute uts are a series of parameter names for the binthable Indirect,

input-output parameters for the nwe job. The job components liprceidin y the name

and binding specification for each job.

The jot, inputs and outputs are user-assigned names for component inputs

and outputs which are not to be made specsifi by the job description. They are

dummy names which ate used in the components list to show wth relationship between

the Inputs ah outputs of the new job and the inputs and outputs of the component jobs.

If the job description makes all component incuts and outputs specific, there are no

job inputs or outputs.

7-10



The components list contains an entry for each component job in the sequence
in which they are to be executed in the new job. It gives the name of the component and
binds each of the component's indirect input-output parameters.

7.3.1 Component Input Parameter Binding

Each component imput parameter is bound by the assignment of one of the
following:

(1) An external parameter. This is a literal value to
be used as the value for the component input parametr.

(2) A prmanen paaeter. This is the name of an item
inthedaab ase. Thebinding specification may include a
conditlgn clause and a reformat clause to direct th- 7- am
to select a subset of the named item and to inaterpret the
selected subset in a format which differs from its
format in the data base. The resulting item is to be
used as the input to the com'ponent each time the new
Job is run.

(3) An inter-job parameter. This is the name of an item
in the work area. The binding specification Is the
same as that for a permanent parameter.

(4) Ail.paameter. The component input para-
mee sisl nidrc parameter which must be

b.ýund whenever the component is called as a job or
used in a job decription. The first three parameter
types whichi may be bound to the component input
parameter make it specific; i.e., they specify an
item in the data pool as the source of the input data.
(A literal is an item in the data pool when the job f s
executed.) However, the new job might be more
flexible if the binding for some of the component in-
puts can be deferred until the job is executed. This
is accomplished by binding the component ir4put para-
meter to an Indirect itput parameter of the new job.
The indirect parameter is assigned a name in the
list ol job inputs and this name is used to bind the
inputs of some of the components. When~ the new
jobs is executed, its Indirect input parameter is
made specific by the user. The associated com-
ponenit inputs are made specific at the same time.

7-11

i4-t



(5) A direct parameter. This is a name used to
identify an output of a previous compi inent in the
component list. It is not specific beca~ise there
is no node In the data pool corresponding to ic.
When the now job is e-. --cuted, the system W1ll
assign a node in the scratch area (an intra-JO
parameter) to accept the output of the earlier
component so that it may be used as the input t(.
later components. The output of the earlier
component may also be an output of the job. In
this case, the name of the job output is used, and
the system uses the node 'und to the job output
as the source of the input data for components

rwhose inputs were bound this way. A condition
clause Fnd a reforn t lause maybe used to specify
a subset of the source item and a change in its
structure.

7.3.2 Component Output Parameter Binding
Each compon3nt output parameter is iound by the assignment of one of the

followirtg-

(1) A diret parameter This is the name of anmin id the data base and a condition, if nenessary.
It defines the unique node, in the data bapo s e which
is to receive the output item from the componenlt.

(2) An inter-job parameter. This is the name of an
item in e o rea and a condition, I 'f necessary.
It defines a unique node in the work area which L, to
receive the output from the component.

(3) An iidirect parameter, When the binding specification

a component output parameter is to 'e deferred

until the new job is executed, the component output
parameter is lound to an output of the iiew job. The
user assigns a name in the Job output list and usesthis syse to bind the componendt outnut.

(4) A dircl parnieter. This in a name use'd to specify

S, that. the compponentoenput is to be Bded as an nput

to components which occur later In the comsponents

list.

(1)
AprmnntpraeerTisi tenaeofa



7.3.3 Parameter-Binding Choices

The choices for binding the indirect input-output parameters may be

summarized as follows:

(1) Specific data-base and work-area items may be
bound to some of the input and output parameters of
the compoitents.

(2) Some of the component inputs are connected to out-
puts of previous components by assigning a name to
the output and using that name for the inputs.

(3) With either (1) or (2), a condition clause and a re-
format clause may be used to specify a subset of the
source item and a uhange in its structure when the
source item is used as an input. A condition may be
used with (1) to define a unique node if the named item
is embedded Ina file.

(4) The specific binding of component input and output
parameters may Le deferred unt.1l the new job is
executed by assigning a name in the job input or
job output list and a~sseiating the component Input
or output with that name.

7.4 THE JOB DESCRIPTION LIBRARY

The Job Description Job processes the job description to produce a new

entry in the job description librRry. Such entries are also produced by the Program

Entry job when a new program is defined to the system. The new program is

treated as a one-c•mponent job and is known as a terminal job. These are the

fundamental building blocks of all jobs.

Four major elemets of information are maintained in the job descriltion

library for every Job. To aiditional elements are maintainad for terminal !.ibs.

These are:

For terminal jobs only-

(1) Input-Output Item Description

" (2) Executlve Control Deocriptlon

For all Jobs:

(1) Job Item List

(2) Static Task List

7-13



(3) Component List

(4) Usage List

The input-output item description contains an item definition for each of the

formal parameters of a program. The structural information, which is identical to

the information in the Item List and Term List in the system directories, is maintained.

For fixed parameters, the item description is the definition specified to the Program

Entry job. Fir dynamic parameters, the item description is a null node to ha ceined

by the systm, '.f it is a dynamic input parameter or by the program, during its execu-

tion, if it is a dynamic output parameter.

The executive control description contains the identifier for the program's

object code within the operating system. It is used by the DM-I system to request

that the program be loaded.

The job item lirt contains an entry for each item used in the course of a

job's execution. Therc, is one entry for each of the job's indirect input-output parameters,

one for each data pool item used as specific input-output parameters for a component,

one for each literal used as input to a component, and one for each item needed to

effect the binding of a component output to the inputs of other components. Each item

occurs only once in the job item list, even when it is used as an input to several com-

ponents. Tne input-output items are classified in the job item list in one of the

following cotegorles:

(1) Job Input-Output (indirect)

(2) Intermediate Input-Output (direct)

(3) Internal input-Output (internal)

;4) Literal Input (external)

The job input-output category defines the parameter as an indirect parameter which

must bt bound in any request for execution of the job. Parameters in this category are

the only p: ,• or outputs of the job; the other categories specify items which are

internal to the job. The intermediate iuput-output category defines a requirement

for r scratch item so that one component can write an output item which will be read

7-14



by others. The internal input-output category i. for data-pool items which were
bound to inputs or outputs of components. The literal input category refers to literal
values which were bound to component inputs in the Job description.

A static 1ask list io another element of the Job description library. It is
present for all jobs. The static task list contains one entry for each task (terminal
job or program)' , ch must be executed when the job is requested. The entries
correspond to the fundamental programs which make up the job. If a multicomponent
job is used as a component of a higher level job, the system reduces the set of com-
ponents to the fundamental programs, or tasks, by copying the static task list of the
comiponent job into the static task list of the new job. Each entry in the static task
list contains the executive control description of the program and a list of the formal
parameter names used by the program. Each formal parameter name is equated to an
item in the job item list.

The component list is an internal representation of the component list that
was used in the job description. It permits the system to reconstruct the job
description for display purposes. Eact. elhtry in the component list contains the com-
ponent name and the binding specification that was used for th comv-lnent in the job
description. Each Input and output is coded to specify Ito category in the job Item
list.

The usage list contains the names of all jobs which use the job described
by this library entry as a component. This list is displayed when a job description
Is displayed, so that the user can determine the jobs which would be affected by a
change in a given job.

7.5 JOB AND PROGRAM DELETION

Jobs sand, therefore, programs may be deleted from the job description
library by the Job Deletion job. The deletion may be accompanied by a display of
the job descriptin so that the user mnay scan the usage list to determine which
higher level jobs are affected by the deletion. The display may not be required
because the deletion is f requenty made to acc~ommodate the entry of an updated version
of the job. If an updated version involves no changes in the job's indirect Input-output
paraj .ters. the change can have no effect an higher level jobs which use the change
job as a component.

7-15



7.6 LIBRARY DISPLAY

The job description of any Job in the library may be displayed through use

of the Display Description Job. T7e entire description or a part of it may be

displayed. This ex the user the means of uncovering the descriptive Information

he might need toee the job or to use It a a component in another Job.



SECTION ViII. PROGRAMMING SYSTEM SERVICES

The 1)1-1 service routines offer the user progr ammer a comprehenisive set

of services for storing and accessing data. The service routines exrist to permit the

user to minlpulate the data ojool randomly and conveniently without ptying any attention

to the mechani1cs o~i packing, segmenting, Indexing, etz,. Ile program receives its

data in the forr,, of traditionial, word-c~riented fields. The mechanica and control are

supplied by the service routine. The programmer need only be aware of the lo~gical

structure of the data which hip program processes.

Figure 9- 1 sho~ws the Dd-i I ervlcto Package as the interfaos between the

data pool on mass, storage and the prtgram's buffer within the program. By calls for

service routines, the programmer directs the Servirt Package to transmit data from

the data pool to his buffer, or from his buffer to the date pool. The parameters and

storage space required In Interpreting the data segments in terms of the structure 4e-

ftltitous are controlled by the cervice routines.

+.

+8-



MASS STORAGE DM-1 SERVICES USER PROGRAM

P LDATA DT

-DA;TA- SEGMENT DATA BUFFER
POOL POINTERS BUFFER

1TE M ITEM -DESCRIPTION
LIS9TS - - LIST CONTROL LIST

TABLE POINTERS

Figure 8-1. Interfaces of the DM-1 Services

8.1 DATA ACCESS SERVICES

The user may employ a variety of techniques for Integrating service calls
into his flow of processing. However, all of the techniques essentially consist of ani
Open operation, followed by a mixture of Seek's and Read's and terminated by a Close.

8.1.1 Open- For-!npui;

Tito programmer employs the Open- For- Input service to identify ap area of
the data pool from which be intends to read some data. The O~pen ope.ration ?repares
the DM- 1 system controls so that the system is able to respond to subsequL at input
requests for any item subsumed within the opened it~em.

In the Open request, the user supplies a symbolic name for the item to be
opened. This symbolic nam~e can be either the actual term name of a data-pool Item or
a formal namo that was bound to a term name by the Requeat Processor (see Section %J.
The Open service retrieves the stru~cture definitionis (item List) for the named item and

S " babumed items. Open sets a control pointer, "J", at the first substumed item.
In the example shown in Table 8-1, Purchasing Orders, FILE, 'J" would be set to 2,
the Order Record.

Open also ret~~eves the segment containing the first data that is pertinent to
the opened item. Then it steps over any Irrelevaint data, leav~ng thia data pointers at

!;I_!

tho first data bit of the opened item. This physical retrieval of segments has no Impact

8-2

,• zi



r

TABLE 8-1. STRUCTURE DEFINITIOK FOR PURCHASING ORDERS FILE

RELATIVE ITEM NAME, TYPE, SIZE

ITEM NO.

I Purchasing Orders, FILE

2 (Order, RECORD, 7)

3 PO Number, alphanumeric, 6

4 Due Date, decimal, 6

5 Requestor, alphanumeric, V

6 Vendor Number, decimral, 5

7 Vendor Label, statement, 4

8 Name, alphanumeric, V

9 Street, alphanumeric, V

10 City, alphanumeric, V

11 State, alphanumeric, V

12 Value, intr, V

13 Purchasing Itoms, FILE

14 (Item, RECORD, 3)

I Item Sequence Code, Integer, 8

16 Quantity, Integer, 8

17 Cost, integer, V

8-



on the logic of the user program. The program is affected only when data is moved
into the user buffer area. The completion of the Open operation allows the pro-
grammer to isbue other input requests, namely, Read's and Seek's.

8.1.2 Read

The programmer employs the Read service to move selected data items
into his buffer. This se-'/ice opvL;atcs under the control of a list, the Buffer Descrip-
tion List (BDL), which is supplied by the user with the Read call. The programmer
uses this list to specify which items should be moved to the buffer (TRANSMITTED)
and which items should be passed over (SKIPPED). The BDL describes the buffer
fields, assigned by the programmer to accept the fields transmitted in the Read, by
specifying the size of each buffer field.

The programmer considers first the data item at which the system pointers
are currently sW. The action code (Transmit or Skip) for this item is contained in
the first entry of the list. The second entry defines the action for the second item, and
so on. If the user calls for a- item to be skipped, all items subsumed by this item
are ignored. Consider the statement Vendor Label, which is Item No. 7 in Figure
8-2. If a BDL called for skipping this 6atement, the four subsumed items would be
passed over. The next action code in the BDL would affect Item No. 12, Value.

However, if a programmer calls for an item to be transmitted, the entire
item is not automatically transmitted. The programmer can select just those sub-
items which he wants. He does this by including an entry In the BDL for each subitem.
Thus, if a programmer called for transmitting Vendor Label, this could be followed by
"Transmit, Skip, Skip, Transmit. " This would cause the DM-1 Services to move
Name into the buffer, followed by State. Since the programmer does not explicitl$,
name the fields in the list, it is :mportant for him to be mindful of the position of the
system pointers.

Each entry in Lhc BDL .'ontains space for buffer field size and status Indi-
cators, !n addition to the -ktp/ "ransmit _ction code. The user supplies the size of
the buffer field for every field which is to be transmittAd. This enablcs the DM--1
system to Justify each piece of data in a buffer field of convenient size for the user's
processing. In the status Andic :tors, the system supplies information such as:

8-4



end of file, optional item missing, and item-size error. Figure 8-2 shows the Buffer

Description List for a program that needs the fields Name and State from the Vendor

Label statement. The list assumes that the input pointer is at Item No. 7, Vendor

Label.

ACTION SIZE INDICATOR

7. VENDOR LABEL, S T - T Transmit

8. NAME, A T 24 S =Mr!p

9. STREET, A S - Size gives number of

10. CITY, A S - units; the unit is

11. STATE, A T 16 identified in item type
I_ I I of Item List

Figure 8-2. Sample Buffer Description List

When the Read operation is completed, the system pointers remain set at the

item which follows the last item treated in the Buffer Description List.

8.1.3 Seek

The programmer employs the Seek service to access data in a completely

random manner witHin the opened item. In a Seek call, the programmer identifies a

desired data item; the DI-I service sets the data pointers and the control pointers to

that item. The item can be identified by relative item rumber (see Table 8-1), or by

relative item number 'i•d record number. In the latter case, the programmer may

replace the record number with an end-of-file indicator or with a key value for an

ordered file.

Depending on the item desired, Seek can move the pointers forward or

backward. If the Item is not in the currently available segment, the service routine

retrieves the segment containing the (Irat data of the desired item. Seek, like Open,

does not move any data Int3 the user bttffer.

8. 1.4 Close-For- Input

The programmer employe a Clos.-For-ltput call to indicate that he has

no further need for the opened item. The Close operation releases the storage areas
which the system was using for this item.

8-5

mi*P" -' • ..



8.1.5 Retrieve-Item

Retrieve-Item is both the most comprehensive DM-1 access service and

the simplest to use. It provides the programmer with a single call which will fetch

data from any area of the data pool and deliver it to the user's buffer. Retrieve ef-

fectively combines the operations of Open, Read, and Close.

For a Retrieve-Item call, the programmer supplies the symbolic name of

the desired item together with a Buffer Description List which controls the editing of

the item. The symbolic name can be either the actual term name of a data pool item

or a formal name that was bound to a term name by the Request Processor (see

Section V). The Buffer Description List is the same as that described for the Read

service in this section.

Retrieve is convenient to use inasmuch as it permits the user to get an

input item witb a single call. Moreover, since Rctrieve is a completely random

operation, the programmer is relieved of responsibility for knowing the initial

position of the system pointers. However, the programmer cannot rely on Retrieve

for all data accesses. Since this service delivers the data to the user's buffer, the
user cannot call for an item that is larger than his buffer. Even for small items the

programmer may choose to use Open with Read's and Seek's. To cite an extreme

case, the programmer would not want to Retrieve-Vendor Label (Table 8-1) and then

Retrieve-Value, This pair of calls would cause the DM- 1 system to repeat unneces-

sarily several operations, such as retrieving the Item List and building u.e Item

List Table. The use of Open permits any number of accesses of the subsumed items,
while the major control operations arc performed only once. E-h user can apply

these considerations to his own program and select the method of accessing whi h

offers h, ,n the greater advantagp.

8.2 WRITING SERVICES

The DM-1 data storage services are divided into two categories: the

writing services, which are treated in t,- aaragraph, and the updating servicer,.

which are covered in Paragraph 8. 3. Wrlting is strictly an out-put operation, while
updating Is a combination of lnput and output operations.

l• 8-C



Writing admits of fewer variations than reading. To begin with, writing

proceeds always in a forward direction. In addition, writing does not permit skipping

to an item, as in a Seel operation where many items of different levels may be logically

passed over. In writing, only the current item may be skipped. Although this could

involve the skipping of many subsumed items, it is still a rather straightforward

operation.

8.2.1 Open-For-Writing

The programmer employs the Open- For-Wriding service to identify an area

of the data pool into which he intends to put some data. The structure of the data

item being opened must have been uefined earder, either by means of the Define-!_'em

job or by means of the Fix-Item service. The Open-For-Writing service includes all

of the operations performed in Open-For-Input- translating the symbolic item name

to a system identifier (IPC), retrieving the structure definitions (Item List), and

retrieving the data segment in which the opened item logically belongs (based on it:

IPC). In addition, Open-For-Writing sets up a new output segm-ent and copies from

the retrieved data segment any data which has an identifier lower than the IPC of

the opened item. At this point the system is ready to receive new data from the user

program via Write calls.

8.2.2 W ite

The programmer employs the Write service to put new data into th ' data

pool. A Buffer Descriotlon Li, must accompany the Write req-est. In each entry

of this list, the programmer sets an action code to indicate whether the item ia pre-

sent in the buffer (Transmit) or missing (Skip). For each field which is present the

list must also contain the item size. The first entry of the BDL pertains to the first

item subsumed by the opened item. If this lLeit' is declared to be misstng, all of its

suoitems are assumed to be missing. If the item is deciared to be present, the next

BDL entry pertains to its firzt subitem. This is completely parallel to the stepping of

the pointers In the Resd operation, described in Paragraph 8. 1.2.

When an item is missing, thiS may bN -'cpresented in the data pool in it I

varie.ty of ways, such as: a file with 0 records, a variLtbIe length field of size 0,

a fixed length field with its oull bit set, or as an optionai .tern which is absent. The

8-7



particular re-resentation is~choaen automatically by the Write service depending on the

type of the item (defined in the Item List). The user need only set the action code for

the item to Skip.

When a Write request is satittted, the system pointers remain set at the

item which follows the last item treated in the Buffer Description List.

8.2.3 Close-For-Writing

The programm-'r employs a Close-For-Writing call to indicate that he

had finished writing the opened item. The Close request causes the VM-1 system

to retrieve the data segment containing the item which logically follows the closed

item. This item and the rest of its segment are copied into the output stream

following the closed item.

After this is accomplished, the system directories are updated with the

segment names of all 'he segments which were recorded from the Open procedure

down to an6 including te Close procedure. Then the storage areas whic. the

system, was using this item are released.

8.2.4 Insert-Data,

The Insert-Data service parallels the input service Retrieve-Item.

The programmer employs Insert-Data to accomplish an Open, a Write, and a

Close all in one request. The user supplies a symbolic item name and a Buffer

Description List with the call. All of the data which Is to be written must be in the

user's buffer when the request is issued. The system writes the data into the data

pool and copies as much of the logically adjacent data as is required to maintain

the integrity of the data stream. The service routine thei1, updates the system direc-

tories and the operation is complete.

8.3 UPDATING SERVICES

The DM-l updating routines provide the programmer with a convenient set

of services for modifying an item which is in the data pool. The ,, ,ating services

comtl,e, input and output operatioa.s. While updating is in progress, two items arc

said to l,,- active: the Item fron. the data pool (input item) and the new version being

ec! ited (output Item). While updating, the user can issue a wide range of requests.

B-



Soie re'quepte affect onIN the input !tem (Read and Seek), Lisert affects orly the

output item, and Lhe rununing calls affect both items (Replace, Delote, and Seek-
With-copy).

As in the writing procedure, the user must pi ogress through th output

item In a forward direction. However, in updating, he does not have to prepare all

the output data; he can direct the system to copy data from the input item. The user

is, free to move the input item in any direction. But, before he call, on the system to

perform a copy operatio,,, the user must have his input item in the logically correct

position. Copying requh es that the structure of the input match the structure oi the

output. This does not imply that the record number of tI!. In•ut item must match

that of t'Ve output item; only the structures must coincide.

5.3. 1 Open-For-Updating

The programmer employs the Open-For-IUpdating ý,:. vice to identify a

section of the data pool which he intends to modify. The Open operrtion prepares the

DM- 1 system controls so that the system is able to respond to subsequent -update

request for any item subsumed within the opened ifem.

The Open-For-Updating operatin bogins In the jame manner as Open-For-

Writing. An Item List 'I able containing the structure definitions of the opened item is
built. The daia segment which should rontain t.he first data of the opened item to

retrieved. An output segment is Initialized and any data In the input segment havintie

in IN' less than the tdeittif,.•r of the upened item is copted to i .e output segment.

Ce_,rtain system pointers are then duplicated to permit the input item to be moved
Independent~ly from the output item.t

8.3.2 Read, Seek

Read and ,%ek 're Identical to the service# described tnder Inp-it in Para-

gra•h 8.1.

8.3.3 Insert

Insert consists of a write operation; it affects only' the output Item. Con-

s6queatly, It !o logically limited to writing s new ',ecord. Any other ti-Te of data

item woold have at least some mark in the Input item, and, therefore, a replace

8-9|

U _____________



otwration wkould be used '"ht Inhsert ,.all nmufat bc acc'rwpani ,,,I by a Buffer lir scr'iptjro

List. The user interface is exactly as that described lot Writ, in JParagI aph •. 2.

8.3.4 Replace

The programmer employs the Replace service to substitute drta Jn his

buffer for the next item of input. Replace moves the data from th1 bitffcr to the ,.,t-

put item under control of a BDL as in a write operatton. Then the system skips the

Input pointers over the current input item. The user should account for this entire

item in his BDL by means of either T;ansmit's or Skir)'s.

U.3.5 Delete

The programmer employs Delete to eliminate ttne data corresponding to the

current item. No BDI, is needed with this call. The system simply marks the entire

item as missing in the output; the particular ,nark usud depends on the item type, as

explained in Paragraph 8.2.2. On the input side, the E-ystem pointers are moved past

the current item.

8. 3. 6 Seek-With-Copy

The programmer employs the Seek-With-Copy service to copy a portion of

the input item into the output. No BDL need accompany this call, since the data is

completely defined in the input Item. The user simply identifies the input item which

Is tC terminate the copy operation. As with Seek, he may Identify the itern by a

relative item number, or by a relative item number and a record number. In the

latter case, the record number cqn be replaced by an end-of-file indicator or by a

key value for an ordered file.

The Seek-With-Copy service begins by copying thv current input item and

continues down to, but excludes the item identified in the request.

8.3.7 Close- For-Update

In many respects this operation parallels Close- For-Writing. The unique

aspect of this service is that It copies any data remaining in the input item. If the

input pointers are already set at the item f,, ..... g the opened item, this step is

skipped. Next, any data following the opened item in the Input segment is copied into

the nutput stream. The system directories are updated to include the new segments

written during the upd-.te procedure. Then the storage arcas which the system was

ub! ,g are released.

8-10



8.3.8 Replace-Item

The programmer emplc , the Replace-Item service to substitute a new
data item for mn existing data item , a completely random manner. This single call
causes the DM-- 1 system to edit data from the user's buffer and put it into the data
pool. The system directories are updated so that the new data logically t'kes the
place of the named item. In addition to the data, the user supplies a symbol!c item
name (as in the Open calls) and a Buffer Description List.

8.3.9 Delete-Item

Tht; is a completely randomin service, simii=, i*Q .eplace-Itein, but here
the named item is riolaced with a mark indicating that the item 10 missing. It follows
that no Buffer Description List is required.

8-11



S. ... C!! hLSSI.FIED_ -__

Security Classification ,

oDOCUMENT CONTROL DATA" R&D
(Security classilicationr of title, bcdy of abstract and indexisn g notef0an must be entered when the overall #.g>'l i. •deeailled)

I ORI(IN.ATINC ACTIDV"fY eCorporate au.no) 2a RLPONT SrCL1"I' tY C LASIFICATION

Auerbach Corporation UnclassifleC

Philadelphia 3, Pennsylvania 19107 2b "lOUP

3 nFPoRT TITL.E
Reliability Central Automatic Data Processing Subsystem

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Rcport
5 AUThOR(S) (L,,et name, firse name, Initiel)

Dr. J. Sable, W. Crowley, M. Rosenthal, S. Forst, P. Harper

6 REPORT DATE 7& TOTAL NO. OF PAGES Tb NO OF REFS

Auust 1966 - _________ 8 __ ____ IOn CO-NTRACT OR GRANT NO 9 a, ORIGINATOR'S REPORT NUMOER(S)

AF 3')(602)-3820 1280-TR
SPROJEC 4No 5519

C Sb. OTHIERRIPORT NO(S) (Any other nuetbere itit may be a,, ighed
this report)

d RADC-TR-66-474 (3 Vols)
10 A VA IL ABILITY/LIMITATION NOTICES

This document is subject to special expoit controls and each transmittal to
foreign governments or foreign nationals may be made oly wivih prior approval 3f

rADC ( (;, UAFB, NY 13440.
II SUPPLEMENTARY NOTES 1.,.ONSORING MILITARY ACTIVITY

Rome Ai- Development Center (E211D)

Griffiss Air Force Base, New York 13440

13 ABSTRACT

This is a three-volume final report produced for the Rome Air Development
Center (RADC) under Contract AF 30(602)-3820. Volume! I and II are the Design
Specificati.;i Report for the Automatic Data Processing Subsystem (ADPS) of
Reliability Central, known as Data Maiager-l (DM-I). Volume III is a survey
of major, computer-oriented oh.-line information a&.I fact retrieval systems.

The syste,, design specification will be used for the implementatio.I of the
computer prorrams required to operate th( RADC Reliability Central. The work
reportea in these volu •es is an extension and detailing of the functional
rvstem design developed by Auerbach Corp. under Contract AF 30(6o0)-34,33 and
reported in RADC-TR-65-189, Design of Reliability Central Data Management
Subsystem, July 1965. The DM-i design provides for the incorporation of the
rellab'flity data collected by the Illinois Institute cf '.echnology Research
Institute (IITRI) under Contract AF 30(602)-3621 with Auerbach Corp. as
subcontractor.

D D 1473 UNCLASSIFIED
Security Clapsificatioj



UNCLASSIFIED

LINV A LINK B LINKC
KEYWORDS R~OLF WT ROLK WT ROL.

rile Structures
Data Processing

Storage and Retrieval,,

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security clasification, using standard stuternlen1s
of the contractor, subcontractor, grantee, Department of De- %uch as:
(onse nctivity or other organization (corporat.- author) issuing (1) "Qualified requesters may obtain copi 'a of thisthe report. report from DDC."
2s. REPORT SECURITY CLASGIeICATION: Enter the over- (2) "Foreign announcemc~nt and uiesemination of thisall recurity cl~adefication of the report. Indicate whetherreotb Disntauhizd"Restricted Date" is included. Marking is to be in accord- eotb D sntatoie2Iance with appropriate security regulations, (3) "U. S. Government agencies may obtain eor~u of a

this report directly from :)DC. Other qualified DUCI2b. GROUP: Automatic downgreading is specified In DOD Di- users salc'. request through
rective 5200, 10 and Armed Fo-ces Industrial Manual. Enter
the gr-iup number. Also, when applicable, show that optional t
markings have been used for Group 3 and Group 4 as author- (4) "U., S. military agencies may obtair, copies of this;zed report directly from DDC. Other qualified users
3. T.EPORT TITLE: Enter the complete report title In all shall request through
capital letters. Titles in all cases should bo. unclassified. t
If a meaaiingful title cannot be selected without classifica-
tion, showv title classificetion in all capitals in parenthesis (5) "All distribution of this report Is controlled. Qual-
immediatety follo-wing the title. ified DDC users shall request through
4. DESCRIPTIVE NOTES: If appropriate, enter the type of___________________
report, e.g., interim, progress, summary, annual, o. final. If the report has been furnished to the Office of Technical
Giv'e the inclusive datest when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-
covered, cate this fact . id enter the price, If known.
S. AUTHOR(S): Enter the name(s) of author(s) as shown on 11. SUPPLEMENTARY NOTES: Use for additional explana-
a. in the report. Entei last name, first name, middle Initial, tory notes.
If military, show rank and branch of service. The name of
the prin~ipal i.%thor iti an absolute minimumn requirement. 12. SPONSO-i tuG MILITARY ACTIVITY: Enter the name of

the departmental project office or laboratory sponsoring (pay-6. REPORT DATaC Enter the date of the report as day, Ing for) the research and development. Include address.
month, year; or month, year. If more than one date appears
on the report, use date of publication. 13. ABSTRACT. Enter an abstract giving a brief and facturil

summary of the document indicative of the report, even though7a. TOTAL NUMBER OF PAGES: The total page count it -may also appear elsewhere in the body of the technical re-
should follow norms! pagination procedures, i.e., enter (he port. If additional space is required, a continuation sheet shall
number of pages containing information. be attached.
7b. NUMF3ER OF REFERENCES: Enter the total number of It is highly desirable that the abstract of classified reports
references cited in the repott. be unclassified~. Each paragraph of the abstract shall end with
Ba. CONTrRACT OR GRANT NUMBER: If appropriate, enter an indication of the military security classification of the in-
the spplicabki number of the contract or grant under which formation in the paragraph, represented as r'rS), (s), (C), or()
the report was written. There is no limitation on the length of the abstract. How-
8b, 8c, 8r. 8d. P~ROJECT N'.M%3ER: Enter the appropriate ever, the esuggested length is from 150 to 225 words,
military department identification. such as pr(Ject number, 1.KYWOD: eywrna tcialymnngutrm
subproject number, system numbers, task number, etc.14KE KD eywdnaetcialymnngutrs

or short phrrses that charactetrie a report and may be used as9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi- index entries for cataloging thc report. Key words must lit
cial report number by which the document will be identified selected so that no secu rity classification I.- requ~red. Id#'nti-
and controli,-rt by the originating activity. Thin number must flers, such as equipment model designation, trade name, military
be unique to tils report. project code name, geographic location, may be used as keyI')b OTIWPR REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-

,.r I V (th' sponlsor), also vnter this number(s).
10. AVAIL APILITY/l.IMITATION NOTICES: Enter ainy lim-

iltton mn further dissemination of the report, other than those,

-LA IFI_ _

Security Classification


